These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 3137328)

  • 21. Pulmonary ventilation, blood gases, and blood pH after training of the arms or the legs.
    Rasmussen B; Klausen K; Clausen JP; Trap-Jensen J
    J Appl Physiol; 1975 Feb; 38(2):250-6. PubMed ID: 235505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of pulmonary CO2 flow in the control of the phase I ventilatory response to exercise in humans.
    Cerretelli P; Grassi B; Xi L; Schena F; Marconi C; Meyer M; Ferretti G
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):287-94. PubMed ID: 8549569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximal voluntary hyperpnoea increases blood lactate concentration during exercise.
    Johnson MA; Sharpe GR; McConnell AK
    Eur J Appl Physiol; 2006 Mar; 96(5):600-8. PubMed ID: 16450166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ventilation and acid-base equilibrium for upper body and lower body exercise.
    Sawka MN; Miles DS; Petrofsky JS; Wilde SW; Glaser RM
    Aviat Space Environ Med; 1982 Apr; 53(4):354-9. PubMed ID: 7082250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is the voluntary control of exercise in man necessary for the ventilatory response?
    Adams L; Garlick J; Guz A; Murphy K; Semple SJ
    J Physiol; 1984 Oct; 355():71-83. PubMed ID: 6436481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery.
    Yoshida T; Chida M; Ichioka M; Makiguchi K; Eguchi J; Udo M
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):193-6. PubMed ID: 2126506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of spinal cord transmission in the ventilatory response to exercise in man.
    Adams L; Frankel H; Garlick J; Guz A; Murphy K; Semple SJ
    J Physiol; 1984 Oct; 355():85-97. PubMed ID: 6436482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemodynamic, ventilatory and metabolic effects of light isometric exercise in patients with chronic heart failure.
    Reddy HK; Weber KT; Janicki JS; McElroy PA
    J Am Coll Cardiol; 1988 Aug; 12(2):353-8. PubMed ID: 3392326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of lungs and inactive muscle in acid-base control after maximal exercise.
    Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Obminski G; Sutton JR; Jones NL
    J Appl Physiol (1985); 1988 Nov; 65(5):2090-6. PubMed ID: 3145276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of inspiratory resistive loading on control of ventilation during progressive exercise.
    D'Urzo AD; Chapman KR; Rebuck AS
    J Appl Physiol (1985); 1987 Jan; 62(1):134-40. PubMed ID: 3104283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ventilatory and pressor response to isometric exercise in normal subjects.
    Bosisio E; Arosio A; Mandelli V; Sergi M
    Respiration; 1980; 40(6):337-43. PubMed ID: 6784202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Respiratory responses to sustained isometric muscle contractions in man: the effect of muscle mass.
    Imms FJ; Mehta D
    J Physiol; 1989 Dec; 419():1-14. PubMed ID: 2621624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic and steady-state ventilatory and gas exchange responses to arm exercise.
    Casaburi R; Barstow TJ; Robinson T; Wasserman K
    Med Sci Sports Exerc; 1992 Dec; 24(12):1365-74. PubMed ID: 1470020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of exercise on acid-base status and ventilatory kinetics.
    Phatak MS; Kurhade GA; Kaore SB; Pradhan GC
    Indian J Physiol Pharmacol; 1998 Jul; 42(3):417-20. PubMed ID: 9741659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arterial blood gases and acid-base status of dogs during graded dynamic exercise.
    Musch TI; Friedman DB; Haidet GC; Stray-Gundersen J; Waldrop TG; Ordway GA
    J Appl Physiol (1985); 1986 Nov; 61(5):1914-9. PubMed ID: 3096950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.
    Miyamoto T; Manabe K; Ueda S; Nakahara H
    Exp Physiol; 2018 May; 103(5):748-760. PubMed ID: 29509982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise.
    Kowalchuk JM; Heigenhauser GJ; Jones NL
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Nov; 57(5):1558-63. PubMed ID: 6520052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attenuated respiratory compensation during rapidly incremented ramp exercise.
    Scheuermann BW; Kowalchuk JM
    Respir Physiol; 1998 Dec; 114(3):227-38. PubMed ID: 9926987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Femoral vascular occlusion and ventilation during recovery from heavy exercise.
    Haouzi P; Huszczuk A; Porszasz J; Chalon B; Wasserman K; Whipp BJ
    Respir Physiol; 1993 Nov; 94(2):137-50. PubMed ID: 8272586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Mechanisms facilitating oxygen delivery during exercise in patients with chronic heart failure].
    Agostoni P; Assanelli E; Guazzi M; Grazi M; Perego GB; Lomanto M; Cattadori G; Lauri G; Marenzi G
    Cardiologia; 1997 Jul; 42(7):743-50. PubMed ID: 9270180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.