These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31373287)

  • 1. Adaptive Method for Quantitative Estimation of Glucose and Fructose Concentrations in Aqueous Solutions Based on Infrared Nanoantenna Optics.
    Schuler B; Kühner L; Hentschel M; Giessen H; Tarín C
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31373287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Sensing Using Infrared Nanoantennas: Toward the Noninvasive Quantitation of Physiological Levels of Glucose and Fructose.
    Kühner L; Semenyshyn R; Hentschel M; Neubrech F; Tarín C; Giessen H
    ACS Sens; 2019 Aug; 4(8):1973-1979. PubMed ID: 31274277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Methods of Regression for Plasmonic Nanoantenna Glucose Sensing.
    Corcione E; Pfezer D; Hentschel M; Giessen H; Tarín C
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Concentrations of Mixed Sugar Solutions with a Combination of Resonant Plasmon-Enhanced SEIRA and Principal Component Analysis.
    Pfezer D; Karst J; Hentschel M; Giessen H
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.
    Kanou M; Kameoka T; Suehara KI; Hashimoto A
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):735-742. PubMed ID: 28300505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of multi-component sugar aqueous solution in low-concentration by near-infrared spectrometry].
    Hu B; Chen D; Su QD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1049-52. PubMed ID: 16241052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes.
    Daikuzono CM; Delaney C; Tesfay H; Florea L; Oliveira ON; Morrin A; Diamond D
    Analyst; 2017 Mar; 142(7):1133-1139. PubMed ID: 28300229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water can be a probe for sensing glucose in aqueous solutions by temperature dependent near infrared spectra.
    Cui X; Liu X; Yu X; Cai W; Shao X
    Anal Chim Acta; 2017 Mar; 957():47-54. PubMed ID: 28107833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterospectral two-dimensional correlation spectroscopy of mid-infrared and Fourier self-deconvolved near-infrared spectra of sugar solutions.
    Cocciardi RA; Ismail AA; Wang Y; Sedman J
    J Agric Food Chem; 2006 Sep; 54(18):6475-81. PubMed ID: 16939300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose and fructose hydrates in aqueous solution by IR spectroscopy.
    Max JJ; Chapados C
    J Phys Chem A; 2007 Apr; 111(14):2679-89. PubMed ID: 17388373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of pure component spectra by independent component analysis in glucose prediction based on mid-infrared spectroscopy.
    Hahn S; Yoon G
    Appl Opt; 2006 Nov; 45(32):8374-80. PubMed ID: 17068585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun gold nanofiber electrodes for biosensors.
    Marx S; Jose MV; Andersen JD; Russell AJ
    Biosens Bioelectron; 2011 Feb; 26(6):2981-6. PubMed ID: 21196109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions.
    Song C; Fan WH; Ding L; Chen X; Chen ZY; Wang K
    Sci Rep; 2018 Jun; 8(1):8964. PubMed ID: 29895843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature.
    Golic M; Walsh K; Lawson P
    Appl Spectrosc; 2003 Feb; 57(2):139-45. PubMed ID: 14610949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate analysis of floral nectar using medium infrared.
    Ortiz CM; Castro IP; Portilla LB; Aranda PD; Arizmendi Mdel C
    Phytochem Anal; 2003; 14(5):319-24. PubMed ID: 14516006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoliter Sensing for Infrared Bioanalytics.
    Kratz C; Furchner A; Oates TWH; Janasek D; Hinrichs K
    ACS Sens; 2018 Feb; 3(2):299-303. PubMed ID: 29405057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous measurement of glucose and glutamine in aqueous solutions by near infrared spectroscopy.
    Chung H; Arnold MA; Rhiel M; Murhammer DW
    Appl Biochem Biotechnol; 1995 Feb; 50(2):109-25. PubMed ID: 7717706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.
    Jung Y; Hwang J
    Appl Spectrosc; 2013 Feb; 67(2):171-80. PubMed ID: 23622436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of major interference sources in aqueous near-infrared spectroscopy techniques.
    Chen D; Hu B; Shao X; Su Q
    Anal Bioanal Chem; 2004 May; 379(1):143-8. PubMed ID: 15034708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The net analyte preprocessing combined with radial basis partial least squares regression applied in noninvasive measurement of blood glucose].
    Li QB; Huang ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):494-7. PubMed ID: 24822427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.