BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3137332)

  • 1. The effects of magnesium on potassium transport in ferret red cells.
    Flatman PW
    J Physiol; 1988 Mar; 397():471-87. PubMed ID: 3137332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of calcium on potassium transport in ferret red cells.
    Flatman PW
    J Physiol; 1987 May; 386():407-23. PubMed ID: 3119819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium and potassium transport in ferret red cells.
    Flatman PW
    J Physiol; 1983 Aug; 341():545-57. PubMed ID: 6620190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometry of net sodium and potassium fluxes mediated by the Na-K-Cl co-transport system in ferret red cells.
    Flatman PW
    Q J Exp Physiol; 1989 Nov; 74(6):939-41. PubMed ID: 2594943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells.
    Flatman PW; Lew VL
    J Physiol; 1981 Jun; 315():421-46. PubMed ID: 6796677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of Na+-K+-2Cl- cotransport by arsenite in ferret erythrocytes.
    Flatman PW; Creanor J
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):143-52. PubMed ID: 10432345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of human red cell sodium and potassium transport by divalent cations.
    Ellory JC; Flatman PW; Stewart GW
    J Physiol; 1983 Jul; 340():1-17. PubMed ID: 6887042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of metabolism on Na(+)-K(+)-Cl- co-transport in ferret red cells.
    Flatman PW
    J Physiol; 1991 Jun; 437():495-510. PubMed ID: 1890646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes.
    Reed PW
    J Biol Chem; 1976 Jun; 251(11):3489-94. PubMed ID: 6455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of magnesium, ouabain and bumetanide on 86rubidium uptake in a human atrial cell line.
    Borchgrevink PC; Ryan MP
    Br J Pharmacol; 1988 Oct; 95(2):614-8. PubMed ID: 3228677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187.
    Fujise H; Lauf PK
    J Physiol; 1988 Nov; 405():605-14. PubMed ID: 3151371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation and ATP content of ferret red cells.
    Flatman PW; Andrews PL
    Comp Biochem Physiol A Comp Physiol; 1983; 74(4):939-43. PubMed ID: 6132742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bumetanide inhibits (Na + K + 2Cl) co-transport at a chloride site.
    Haas M; McManus TJ
    Am J Physiol; 1983 Sep; 245(3):C235-40. PubMed ID: 6614157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of temperature on three components of passive permeability to potassium in rodent red cells.
    Hall AC; Willis JS
    J Physiol; 1984 Mar; 348():629-43. PubMed ID: 6325676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.
    Flatman PW; Lew VL
    J Physiol; 1980 Aug; 305():13-30. PubMed ID: 6777486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of bumetanide on cation transport in human red blood cells.
    Lubowitz H
    J Pharmacol Exp Ther; 1977 Oct; 203(1):92-6. PubMed ID: 143526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-dependent magnesium uptake by ferret red cells.
    Flatman PW; Smith LM
    J Physiol; 1991 Nov; 443():217-30. PubMed ID: 1822527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent regulation of cation transport in cultured human nonpigmented ciliary epithelial cells.
    Mito T; Delamere NA; Coca-Prados M
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C519-26. PubMed ID: 8384781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells.
    Berenbrink M; Völkel S; Koldkjaer P; Heisler N; Nikinmaa M
    J Physiol; 2006 Aug; 575(Pt 1):37-48. PubMed ID: 16763000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.