These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31373574)

  • 41. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.
    Worth CL; Kleinau G; Krause G
    PLoS One; 2009 Sep; 4(9):e7011. PubMed ID: 19756152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ab initio solution of macromolecular crystal structures without direct methods.
    McCoy AJ; Oeffner RD; Wrobel AG; Ojala JR; Tryggvason K; Lohkamp B; Read RJ
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3637-3641. PubMed ID: 28325875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein structure determination by x-ray crystallography.
    Ilari A; Savino C
    Methods Mol Biol; 2008; 452():63-87. PubMed ID: 18563369
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic Inference of Sequence from Low-Resolution Crystallographic Data.
    Ben-Aharon Z; Levitt M; Kalisman N
    Structure; 2018 Nov; 26(11):1546-1554.e2. PubMed ID: 30293812
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Building a structured PDB: the RS-PDB database.
    Szabadka Z; Grolmusz V
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5755-8. PubMed ID: 17945915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SOLVE and RESOLVE: automated structure solution, density modification and model building.
    Terwilliger T
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):49-52. PubMed ID: 14646132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of Protein-Protein Docking Models Using Deep Learning.
    Zhang Y; Wang X; Zhang Z; Huang Y; Kihara D
    Methods Mol Biol; 2024; 2780():149-162. PubMed ID: 38987469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vagabond: bond-based parametrization reduces overfitting for refinement of proteins.
    Ginn HM
    Acta Crystallogr D Struct Biol; 2021 Apr; 77(Pt 4):424-437. PubMed ID: 33825703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The targets of CAPRI rounds 6-12.
    Janin J
    Proteins; 2007 Dec; 69(4):699-703. PubMed ID: 17671980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SVMCRYS: an SVM approach for the prediction of protein crystallization propensity from protein sequence.
    Kandaswamy KK; Pugalenthi G; Suganthan PN; Gangal R
    Protein Pept Lett; 2010 Apr; 17(4):423-30. PubMed ID: 20044918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput 3D structural homology detection via NMR resonance assignment.
    Langmead CJ; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():278-89. PubMed ID: 16448021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using iterative fragment assembly and progressive sequence truncation to facilitate phasing and crystal structure determination of distantly related proteins.
    Wang Y; Virtanen J; Xue Z; Tesmer JJ; Zhang Y
    Acta Crystallogr D Struct Biol; 2016 May; 72(Pt 5):616-28. PubMed ID: 27139625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ARP/wARP's model-building algorithms. I. The main chain.
    Morris RJ; Perrakis A; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):968-75. PubMed ID: 12037299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unsupervised determination of protein crystal structures.
    Ufimtsev IS; Levitt M
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10813-10818. PubMed ID: 31088963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analyses of protein cores reveal fundamental differences between solution and crystal structures.
    Mei Z; Treado JD; Grigas AT; Levine ZA; Regan L; O'Hern CS
    Proteins; 2020 Sep; 88(9):1154-1161. PubMed ID: 32105366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Docking of protein models.
    Tovchigrechko A; Wells CA; Vakser IA
    Protein Sci; 2002 Aug; 11(8):1888-96. PubMed ID: 12142443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iterative ACORN as a high throughput tool in structural genomics.
    Selvanayagam S; Velmurugan D; Yamane T
    Indian J Biochem Biophys; 2006 Aug; 43(4):211-6. PubMed ID: 17133764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biophysical highlights from 54 years of macromolecular crystallography.
    Richardson JS; Richardson DC
    Biophys J; 2014 Feb; 106(3):510-25. PubMed ID: 24507592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.