BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

726 related articles for article (PubMed ID: 31373611)

  • 1. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CircMiMi: a stand-alone software for constructing circular RNA-microRNA-mRNA interactions across species.
    Chiang TW; Mai TL; Chuang TJ
    BMC Bioinformatics; 2022 May; 23(1):164. PubMed ID: 35524165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CircRNAFisher: a systematic computational approach for de novo circular RNA identification.
    Jia GY; Wang DL; Xue MZ; Liu YW; Pei YC; Yang YQ; Xu JM; Liang YC; Wang P
    Acta Pharmacol Sin; 2019 Jan; 40(1):55-63. PubMed ID: 30013032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the biogenesis and potential functions of exonic circular RNA.
    Ragan C; Goodall GJ; Shirokikh NE; Preiss T
    Sci Rep; 2019 Feb; 9(1):2048. PubMed ID: 30765711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Depth Analysis Reveals Production of Circular RNAs from Non-Coding Sequences.
    Robic A; Demars J; Kühn C
    Cells; 2020 Jul; 9(8):. PubMed ID: 32751504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.).
    Zhang X; Ma X; Ning L; Li Z; Zhao K; Li K; He J; Yin D
    BMC Genomics; 2019 Aug; 20(1):653. PubMed ID: 31416415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AQUARIUM: accurate quantification of circular isoforms using model-based strategy.
    Wen G; Li M; Li F; Yang Z; Zhou T; Gu W
    Bioinformatics; 2021 Dec; 37(24):4879-4881. PubMed ID: 34115093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CircMiner: accurate and rapid detection of circular RNA through splice-aware pseudo-alignment scheme.
    Asghari H; Lin YY; Xu Y; Haghshenas E; Collins CC; Hach F
    Bioinformatics; 2020 Jun; 36(12):3703-3711. PubMed ID: 32259207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse complementary matches simultaneously promote both back-splicing and exon-skipping.
    Cao D
    BMC Genomics; 2021 Aug; 22(1):586. PubMed ID: 34344317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. circtools-a one-stop software solution for circular RNA research.
    Jakobi T; Uvarovskii A; Dieterich C
    Bioinformatics; 2019 Jul; 35(13):2326-2328. PubMed ID: 30462173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs.
    Robic A; Faraut T; Djebali S; Weikard R; Feve K; Maman S; Kuehn C
    RNA Biol; 2019 Sep; 16(9):1190-1204. PubMed ID: 31120323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambiguous splice sites distinguish circRNA and linear splicing in the human genome.
    Dehghannasiri R; Szabo L; Salzman J
    Bioinformatics; 2019 Apr; 35(8):1263-1268. PubMed ID: 30192918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenesis mechanisms of circular RNA can be categorized through feature extraction of a machine learning model.
    Liu C; Liu YC; Huang HD; Wang W
    Bioinformatics; 2019 Dec; 35(23):4867-4870. PubMed ID: 31529043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockout of circRNAs by base editing back-splice sites of circularized exons.
    Gao X; Ma XK; Li X; Li GW; Liu CX; Zhang J; Wang Y; Wei J; Chen J; Chen LL; Yang L
    Genome Biol; 2022 Jan; 23(1):16. PubMed ID: 35012611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs.
    Aufiero S; Reckman YJ; Tijsen AJ; Pinto YM; Creemers EE
    BMC Bioinformatics; 2020 Apr; 21(1):164. PubMed ID: 32349660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SRRM4 Expands the Repertoire of Circular RNAs by Regulating Microexon Inclusion.
    Conn VM; Gabryelska M; Marri S; Stringer BW; Ormsby RJ; Penn T; Poonnoose S; Kichenadasse G; Conn SJ
    Cells; 2020 Nov; 9(11):. PubMed ID: 33207694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.
    Zhang XO; Dong R; Zhang Y; Zhang JL; Luo Z; Zhang J; Chen LL; Yang L
    Genome Res; 2016 Sep; 26(9):1277-87. PubMed ID: 27365365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying circular RNA expression from RNA-seq data using model-based framework.
    Li M; Xie X; Zhou J; Sheng M; Yin X; Ko EA; Zhou T; Gu W
    Bioinformatics; 2017 Jul; 33(14):2131-2139. PubMed ID: 28334396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling and bioinformatics analyses reveal differential expression of circular RNA in tongue cancer revealed by high-throughput sequencing.
    Qiu X; Ke X; Ma H; Han L; Chen Q; Zhang S; Da P; Wu H
    J Cell Biochem; 2019 Mar; 120(3):4102-4112. PubMed ID: 30269358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive circRNA expression profile and function network in osteoblast-like cells under simulated microgravity.
    Cao Z; Zhang Y; Wei S; Zhang X; Guo Y; Han B
    Gene; 2021 Jan; 764():145106. PubMed ID: 32889059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.