BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31373612)

  • 1. ArtiFuse-computational validation of fusion gene detection tools without relying on simulated reads.
    Sorn P; Holtsträter C; Löwer M; Sahin U; Weber D
    Bioinformatics; 2020 Jan; 36(2):373-379. PubMed ID: 31373612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data.
    Rodríguez-Martín B; Palumbo E; Marco-Sola S; Griebel T; Ribeca P; Alonso G; Rastrojo A; Aguado B; Guigó R; Djebali S
    BMC Genomics; 2017 Jan; 18(1):7. PubMed ID: 28049418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing.
    Liu Q; Hu Y; Stucky A; Fang L; Zhong JF; Wang K
    BMC Genomics; 2020 Dec; 21(Suppl 11):793. PubMed ID: 33372596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BreakID: genomics breakpoints identification to detect gene fusion events using discordant pairs and split reads.
    Jin L; Lai J; Zhang Y; Fu Y; Wang S; Dai H; Huang B
    Bioinformatics; 2019 Aug; 35(16):2859-2861. PubMed ID: 30601940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of tools for long read RNA-seq splice-aware alignment.
    Križanovic K; Echchiki A; Roux J; Šikic M
    Bioinformatics; 2018 Mar; 34(5):748-754. PubMed ID: 29069314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads.
    Wu J; Zhang W; Huang S; He Z; Cheng Y; Wang J; Lam TW; Peng Z; Yiu SM
    Bioinformatics; 2013 Dec; 29(23):2971-8. PubMed ID: 24123671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data.
    Kumar S; Vo AD; Qin F; Li H
    Sci Rep; 2016 Feb; 6():21597. PubMed ID: 26862001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution.
    Ge H; Liu K; Juan T; Fang F; Newman M; Hoeck W
    Bioinformatics; 2011 Jul; 27(14):1922-8. PubMed ID: 21593131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion-Bloom: fusion detection in assembled transcriptomes.
    Chiu R; Nip KM; Birol I
    Bioinformatics; 2020 Apr; 36(7):2256-2257. PubMed ID: 31790154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASElux: an ultra-fast and accurate allelic reads counter.
    Miao Z; Alvarez M; Pajukanta P; Ko A
    Bioinformatics; 2018 Apr; 34(8):1313-1320. PubMed ID: 29186329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
    Raghupathy N; Choi K; Vincent MJ; Beane GL; Sheppard KS; Munger SC; Korstanje R; Pardo-Manual de Villena F; Churchill GA
    Bioinformatics; 2018 Jul; 34(13):2177-2184. PubMed ID: 29444201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SimFuse: A Novel Fusion Simulator for RNA Sequencing (RNA-Seq) Data.
    Tan Y; Tambouret Y; Monti S
    Biomed Res Int; 2015; 2015():780519. PubMed ID: 26839886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shark: fishing relevant reads in an RNA-Seq sample.
    Denti L; Pirola Y; Previtali M; Ceccato T; Della Vedova G; Rizzi R; Bonizzoni P
    Bioinformatics; 2021 May; 37(4):464-472. PubMed ID: 32926128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FuMa: reporting overlap in RNA-seq detected fusion genes.
    Hoogstrate Y; Böttcher R; Hiltemann S; van der Spek PJ; Jenster G; Stubbs AP
    Bioinformatics; 2016 Apr; 32(8):1226-8. PubMed ID: 26656567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data.
    Okonechnikov K; Imai-Matsushima A; Paul L; Seitz A; Meyer TF; Garcia-Alcalde F
    PLoS One; 2016; 11(12):e0167417. PubMed ID: 27907167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-fuse: a new class discovery analysis tool to identify and prioritize recurrent fusion genes from RNA-sequencing data.
    Paisitkriangkrai S; Quek K; Nievergall E; Jabbour A; Zannettino A; Kok CH
    Mol Genet Genomics; 2018 Oct; 293(5):1217-1229. PubMed ID: 29882166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVIM: structural variant identification using mapped long reads.
    Heller D; Vingron M
    Bioinformatics; 2019 Sep; 35(17):2907-2915. PubMed ID: 30668829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CoCo: RNA-seq read assignment correction for nested genes and multimapped reads.
    Deschamps-Francoeur G; Boivin V; Abou Elela S; Scott MS
    Bioinformatics; 2019 Dec; 35(23):5039-5047. PubMed ID: 31141144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.