These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31373765)

  • 1. Resource-Saving Production of Dialdehyde Cellulose: Optimization of the Process at High Pulp Consistency.
    Lucia A; van Herwijnen HWG; Oberlerchner JT; Rosenau T; Beaumont M
    ChemSusChem; 2019 Oct; 12(20):4679-4684. PubMed ID: 31373765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of Aqueous Periodate Solutions by Ozone Treatment: A Sustainable Approach for Dialdehyde Cellulose Production.
    Koprivica S; Siller M; Hosoya T; Roggenstein W; Rosenau T; Potthast A
    ChemSusChem; 2016 Apr; 9(8):825-33. PubMed ID: 26990816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy.
    Simon J; Tsetsgee O; Iqbal NA; Sapkota J; Ristolainen M; Rosenau T; Potthast A
    Carbohydr Polym; 2022 Feb; 278():118887. PubMed ID: 34973725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, cost-effective and eco-friendly method for preparation of textile fibers from cellulosic pulps.
    Alam MN; Christopher LP
    Carbohydr Polym; 2017 Oct; 173():253-258. PubMed ID: 28732863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Anionic and Cationic Pulp-Based Flocculants With Diverse Lignin Contents for Application in Effluent Treatment From the Textile Industry: Flocculation Monitoring.
    Grenda K; Gamelas JAF; Arnold J; Cayre OJ; Rasteiro MG
    Front Chem; 2020; 8():5. PubMed ID: 32083051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of novel water-soluble sulfonated cellulose.
    Rajalaxmi D; Jiang N; Leslie G; Ragauskas AJ
    Carbohydr Res; 2010 Jan; 345(2):284-90. PubMed ID: 19959161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.
    Sheikhi A; Yang H; Alam MN; van de Ven TG
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodate oxidation of crystalline cellulose.
    Kim UJ; Kuga S; Wada M; Okano T; Kondo T
    Biomacromolecules; 2000; 1(3):488-92. PubMed ID: 11710141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-shot TEMPO-periodate oxidation of native cellulose.
    Mendoza DJ; Browne C; Raghuwanshi VS; Simon GP; Garnier G
    Carbohydr Polym; 2019 Dec; 226():115292. PubMed ID: 31582089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulosic paper with high antioxidative and barrier properties obtained through incorporation of tannin into kraft pulp fibers.
    Ji Y; Xu Q; Jin L; Fu Y
    Int J Biol Macromol; 2020 Nov; 162():678-684. PubMed ID: 32544590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the bacterial inactivation kinetics of dialdehyde cellulose in aqueous suspension.
    He X; He Z; Li Y; Yu H; Zhang L; Ge H; Man S; Dai Y
    Int J Biol Macromol; 2018 Sep; 116():920-926. PubMed ID: 29772337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Direct Silanization Protocol for Dialdehyde Cellulose.
    Lucia A; Bacher M; van Herwijnen HWG; Rosenau T
    Molecules; 2020 May; 25(10):. PubMed ID: 32466232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodate Oxidation Followed by NaBH
    Leguy J; Diallo A; Putaux JL; Nishiyama Y; Heux L; Jean B
    Langmuir; 2018 Sep; 34(37):11066-11075. PubMed ID: 30129768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility.
    Thiangtham S; Runt J; Manuspiya H
    Carbohydr Polym; 2019 Mar; 208():314-322. PubMed ID: 30658805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable dialdehyde/dicarboxylate nanocelluloses by stoichiometrically optimized sequential periodate-chlorite oxidation for tough and wet shape recoverable aerogels.
    Patterson G; Hsieh YL
    Nanoscale Adv; 2020 Dec; 2(12):5623-5634. PubMed ID: 36133858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure Selectivity of Alkaline Periodate Oxidation on Lignocellulose for Facile Isolation of Cellulose Nanocrystals.
    Liu P; Pang B; Dechert S; Zhang XC; Andreas LB; Fischer S; Meyer F; Zhang K
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3218-3225. PubMed ID: 31692150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Debugging periodate oxidation of cellulose: Why following the common protocol of quenching excess periodate with glycol is a bad idea.
    Simon J; Fliri L; Drexler F; Bacher M; Sapkota J; Ristolainen M; Hummel M; Potthast A; Rosenau T
    Carbohydr Polym; 2023 Jun; 310():120691. PubMed ID: 36925234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting dialdehyde cellulose nanocrystals using choline chloride/urea-based deep eutectic solvents: A comparative study in NaIO
    Xu Y; Xu Y; Deng W; Chen H; Xiong J
    Int J Biol Macromol; 2023 Aug; 246():125604. PubMed ID: 37392908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents.
    Kim UJ; Lee YR; Kang TH; Choi JW; Kimura S; Wada M
    Carbohydr Polym; 2017 May; 163():34-42. PubMed ID: 28267516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of xylan via an oxidation-reduction reaction.
    Palasingh C; Nakayama K; Abik F; Mikkonen KS; Evenäs L; Ström A; Nypelö T
    Carbohydr Polym; 2022 Sep; 292():119660. PubMed ID: 35725206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.