These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 31373791)
1. Bioprinting of a Cell-Laden Conductive Hydrogel Composite. Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791 [TBL] [Abstract][Full Text] [Related]
2. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857 [TBL] [Abstract][Full Text] [Related]
3. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301 [TBL] [Abstract][Full Text] [Related]
4. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
5. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
6. Development of Electro-Conductive Composite Bioinks for Electrohydrodynamic Bioprinting with Microscale Resolution. Kasimu A; Zhu H; Meng Z; Qiu Z; Wang Y; Li D; He J Adv Biol (Weinh); 2023 Oct; 7(10):e2300056. PubMed ID: 37062755 [TBL] [Abstract][Full Text] [Related]
7. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
8. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. Song S; Li Y; Huang J; Cheng S; Zhang Z Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714 [TBL] [Abstract][Full Text] [Related]
9. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
11. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
12. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
13. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
14. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of conductive hydrogel for enhanced myogenic differentiation. Wang Y; Wang Q; Luo S; Chen Z; Zheng X; Kankala RK; Chen A; Wang S Regen Biomater; 2021 Oct; 8(5):rbab035. PubMed ID: 34408909 [TBL] [Abstract][Full Text] [Related]
17. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
18. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
20. Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy. Molina BG; Fuentes J; Alemán C; Sánchez S Biosens Bioelectron; 2024 May; 251():116117. PubMed ID: 38350239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]