These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31373819)

  • 1. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
    Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG
    J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.
    Therrien E; Weill N; Tomberg A; Corbeil CR; Lee D; Moitessier N
    J Chem Inf Model; 2014 Nov; 54(11):3198-210. PubMed ID: 25280064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexi-pharma: a molecule-ranking strategy for virtual screening using pharmacophores from ligand-free conformational ensembles.
    Lans I; Palacio-Rodríguez K; Cavasotto CN; Cossio P
    J Comput Aided Mol Des; 2020 Oct; 34(10):1063-1077. PubMed ID: 32656619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All in One: Cavity Detection, Druggability Estimate, Cavity-Based Pharmacophore Perception, and Virtual Screening.
    Tran-Nguyen VK; Da Silva F; Bret G; Rognan D
    J Chem Inf Model; 2019 Jan; 59(1):573-585. PubMed ID: 30563339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased Docking for Protein-Ligand Pose Prediction.
    Arcon JP; Turjanski AG; Martí MA; Forli S
    Methods Mol Biol; 2021; 2266():39-72. PubMed ID: 33759120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists. Comparison with docking and shape-matching virtual screening performance.
    Karaboga AS; Planesas JM; Petronin F; Teixidó J; Souchet M; Pérez-Nueno VI
    J Chem Inf Model; 2013 May; 53(5):1043-56. PubMed ID: 23577723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach for efficient pharmacophore-based virtual screening: method and applications.
    Dror O; Schneidman-Duhovny D; Inbar Y; Nussinov R; Wolfson HJ
    J Chem Inf Model; 2009 Oct; 49(10):2333-43. PubMed ID: 19803502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.
    Uehara S; Tanaka S
    J Chem Inf Model; 2017 Apr; 57(4):742-756. PubMed ID: 28388074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.
    Xia J; Hsieh JH; Hu H; Wu S; Wang XS
    J Chem Inf Model; 2017 Jun; 57(6):1414-1425. PubMed ID: 28511009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRDOCK: an ultrafast multipurpose protein-ligand docking tool.
    Cortés Cabrera Á; Klett J; Dos Santos HG; Perona A; Gil-Redondo R; Francis SM; Priego EM; Gago F; Morreale A
    J Chem Inf Model; 2012 Aug; 52(8):2300-9. PubMed ID: 22764680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations.
    Wieder M; Garon A; Perricone U; Boresch S; Seidel T; Almerico AM; Langer T
    J Chem Inf Model; 2017 Feb; 57(2):365-385. PubMed ID: 28072524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoDock-SS: AutoDock for Multiconformational Ligand-Based Virtual Screening.
    Ni B; Wang H; Khalaf HKS; Blay V; Houston DR
    J Chem Inf Model; 2024 May; 64(9):3779-3789. PubMed ID: 38624083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based virtual screening approach for discovery of covalently bound ligands.
    Toledo Warshaviak D; Golan G; Borrelli KW; Zhu K; Kalid O
    J Chem Inf Model; 2014 Jul; 54(7):1941-50. PubMed ID: 24932913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.