These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31374072)

  • 1. Every which way? On predicting tumor evolution using cancer progression models.
    Diaz-Uriarte R; Vasallo C
    PLoS Comput Biol; 2019 Aug; 15(8):e1007246. PubMed ID: 31374072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer progression models and fitness landscapes: a many-to-many relationship.
    Diaz-Uriarte R
    Bioinformatics; 2018 Mar; 34(5):836-844. PubMed ID: 29048486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next?
    Diaz-Colunga J; Diaz-Uriarte R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009055. PubMed ID: 34932572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying restrictions in the order of accumulation of mutations during tumor progression: effects of passengers, evolutionary models, and sampling.
    Diaz-Uriarte R
    BMC Bioinformatics; 2015 Feb; 16():41. PubMed ID: 25879190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary dynamics of tumor progression with random fitness values.
    Durrett R; Foo J; Leder K; Mayberry J; Michor F
    Theor Popul Biol; 2010 Aug; 78(1):54-66. PubMed ID: 20488197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the predictability of cancer evolution.
    Hosseini SR; Diaz-Uriarte R; Markowetz F; Beerenwinkel N
    Bioinformatics; 2019 Jul; 35(14):i389-i397. PubMed ID: 31510665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring the paths of somatic evolution in cancer.
    Misra N; Szczurek E; Vingron M
    Bioinformatics; 2014 Sep; 30(17):2456-63. PubMed ID: 24812340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring fitness landscapes by regression produces biased estimates of epistasis.
    Otwinowski J; Plotkin JB
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):E2301-9. PubMed ID: 24843135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the Hypercube: Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks.
    Zagorski M; Burda Z; Waclaw B
    PLoS Comput Biol; 2016 Dec; 12(12):e1005218. PubMed ID: 27935934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer.
    Gatenby RA; Brown J
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):162-166. PubMed ID: 28341421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary accessibility of mutational pathways.
    Franke J; Klözer A; de Visser JA; Krug J
    PLoS Comput Biol; 2011 Aug; 7(8):e1002134. PubMed ID: 21876664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Evolution in Asexual Populations with Epistasis.
    Diaz-Uriarte R
    Methods Mol Biol; 2021; 2212():121-154. PubMed ID: 33733354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The somatic molecular evolution of cancer: Mutation, selection, and epistasis.
    Dasari K; Somarelli JA; Kumar S; Townsend JP
    Prog Biophys Mol Biol; 2021 Oct; 165():56-65. PubMed ID: 34364910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical prediction models to predict the risk of multiple binary outcomes: a comparison of approaches.
    Martin GP; Sperrin M; Snell KIE; Buchan I; Riley RD
    Stat Med; 2021 Jan; 40(2):498-517. PubMed ID: 33107066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing mutational and adaptive landscapes and the genesis of cancer.
    Liggett LA; DeGregori J
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):84-94. PubMed ID: 28167050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking.
    Miller CR; Van Leuven JT; Wichman HA; Joyce P
    Theor Popul Biol; 2018 Jul; 122():97-109. PubMed ID: 29198859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Complexity as an Ultimate Constraint on Evolution.
    Kaznatcheev A
    Genetics; 2019 May; 212(1):245-265. PubMed ID: 30833289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of genotype-phenotype maps makes fitness landscapes navigable.
    Greenbury SF; Louis AA; Ahnert SE
    Nat Ecol Evol; 2022 Nov; 6(11):1742-1752. PubMed ID: 36175543
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.