These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31374167)
1. Vitamin A Production by Engineered Sun L; Kwak S; Jin YS ACS Synth Biol; 2019 Sep; 8(9):2131-2140. PubMed ID: 31374167 [TBL] [Abstract][Full Text] [Related]
2. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Sun L; Atkinson CA; Lee YG; Jin YS Biotechnol Bioeng; 2020 Nov; 117(11):3522-3532. PubMed ID: 33616900 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Guo W; Sheng J; Zhao H; Feng X Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023 [TBL] [Abstract][Full Text] [Related]
5. Selective production of retinol by engineered Saccharomyces cerevisiae through the expression of retinol dehydrogenase. Lee YG; Kim C; Sun L; Lee TH; Jin YS Biotechnol Bioeng; 2022 Feb; 119(2):399-410. PubMed ID: 34850377 [TBL] [Abstract][Full Text] [Related]
6. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Kim SR; Park YC; Jin YS; Seo JH Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005 [TBL] [Abstract][Full Text] [Related]
7. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688 [TBL] [Abstract][Full Text] [Related]
8. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
9. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Kang NK; Lee JW; Ort DR; Jin YS Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
11. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S; Jin YS Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose. Park SH; Lee K; Jang JW; Hahn JS ACS Synth Biol; 2019 Feb; 8(2):346-357. PubMed ID: 30586497 [TBL] [Abstract][Full Text] [Related]
14. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
15. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Jang HJ; Yoon SH; Ryu HK; Kim JH; Wang CL; Kim JY; Oh DK; Kim SW Microb Cell Fact; 2011 Jul; 10():59. PubMed ID: 21801353 [TBL] [Abstract][Full Text] [Related]
16. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762 [TBL] [Abstract][Full Text] [Related]
17. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related]
19. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism. Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490 [TBL] [Abstract][Full Text] [Related]
20. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH; Song H; Li BZ; Yuan YJ Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]