These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31374167)
41. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
42. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
44. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. Gao X; Caiyin Q; Zhao F; Wu Y; Lu W J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965 [TBL] [Abstract][Full Text] [Related]
45. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. Feng Q; Liu ZL; Weber SA; Li S PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349 [TBL] [Abstract][Full Text] [Related]
46. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975 [TBL] [Abstract][Full Text] [Related]
47. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Lee YG; Jin YS; Cha YL; Seo JH Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640 [TBL] [Abstract][Full Text] [Related]
48. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
49. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae. Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703 [TBL] [Abstract][Full Text] [Related]
51. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
52. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
53. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Wu Y; Xu S; Gao X; Li M; Li D; Lu W Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047 [TBL] [Abstract][Full Text] [Related]
54. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. Kim SR; Lee KS; Kong II; Lesmana A; Lee WH; Seo JH; Kweon DH; Jin YS J Biotechnol; 2013 Mar; 164(1):105-11. PubMed ID: 23376240 [TBL] [Abstract][Full Text] [Related]
55. Biosynthetic strategies to produce xylitol: an economical venture. Xu Y; Chi P; Bilal M; Cheng H Appl Microbiol Biotechnol; 2019 Jul; 103(13):5143-5160. PubMed ID: 31101942 [TBL] [Abstract][Full Text] [Related]
56. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Ho NW; Chen Z; Brainard AP; Sedlak M Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435 [TBL] [Abstract][Full Text] [Related]
57. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Wang X; Goh EB; Beller HR Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483 [TBL] [Abstract][Full Text] [Related]
58. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. Fathi Z; Tramontin LRR; Ebrahimipour G; Borodina I; Darvishi F FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33332529 [TBL] [Abstract][Full Text] [Related]
59. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Young EM; Comer AD; Huang H; Alper HS Metab Eng; 2012 Jul; 14(4):401-11. PubMed ID: 22445945 [TBL] [Abstract][Full Text] [Related]
60. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Dos Santos LV; Carazzolle MF; Nagamatsu ST; Sampaio NM; Almeida LD; Pirolla RA; Borelli G; Corrêa TL; Argueso JL; Pereira GA Sci Rep; 2016 Dec; 6():38676. PubMed ID: 28000736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]