These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31374229)

  • 21. Transitioning to composite bacterial mutagenicity models in ICH M7 (Q)SAR analyses.
    Landry C; Kim MT; Kruhlak NL; Cross KP; Saiakhov R; Chakravarti S; Stavitskaya L
    Regul Toxicol Pharmacol; 2019 Dec; 109():104488. PubMed ID: 31586682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results.
    Mombelli E; Raitano G; Benfenati E
    Methods Mol Biol; 2016; 1425():87-105. PubMed ID: 27311463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. (Q)SAR tools for the prediction of mutagenic properties: Are they ready for application in pesticide regulation?
    Herrmann K; Holzwarth A; Rime S; Fischer BC; Kneuer C
    Pest Manag Sci; 2020 Oct; 76(10):3316-3325. PubMed ID: 32223060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico prediction of chemical Ames mutagenicity.
    Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds.
    Gadaleta D; Manganelli S; Manganaro A; Porta N; Benfenati E
    Toxicology; 2016 Aug; 370():20-30. PubMed ID: 27644887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multiple in silico program approach for the prediction of mutagenicity from chemical structure.
    White AC; Mueller RA; Gallavan RH; Aaron S; Wilson AG
    Mutat Res; 2003 Aug; 539(1-2):77-89. PubMed ID: 12948816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mini mutagenicity test: a miniaturized version of the Ames test used in a prescreening assay for point mutagenesis assessment.
    Flamand N; Meunier J; Meunier P; Agapakis-Caussé C
    Toxicol In Vitro; 2001 Apr; 15(2):105-14. PubMed ID: 11287170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the OECD QSAR Application Toolbox and Toxtree for estimating the mutagenicity of chemicals. Part 1. Aromatic amines.
    Devillers J; Mombelli E
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):753-69. PubMed ID: 21120760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A QSAR model for predicting mutagenicity of nitronaphthalenes and methylnitronaphthalenes.
    Zhang Z; Niu J; Zhi X
    Bull Environ Contam Toxicol; 2008 Nov; 81(5):498-502. PubMed ID: 18777149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the mutagenic potential of chemicals in tobacco products using
    Goel R; Valerio LG
    Toxicol Mech Methods; 2020 Nov; 30(9):672-678. PubMed ID: 32752976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward regulatory acceptance and improving the prediction confidence of in silico approaches: a case study of genotoxicity.
    Tcheremenskaia O; Benigni R
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):987-1005. PubMed ID: 34078212
    [No Abstract]   [Full Text] [Related]  

  • 32. In silico prediction of chromosome damage: comparison of three (Q)SAR models.
    Morita T; Shigeta Y; Kawamura T; Fujita Y; Honda H; Honma M
    Mutagenesis; 2019 Mar; 34(1):91-100. PubMed ID: 30085209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutagenicity assessment strategy for pharmaceutical intermediates to aid limit setting for occupational exposure.
    Araya S; Lovsin-Barle E; Glowienke S
    Regul Toxicol Pharmacol; 2015 Nov; 73(2):515-20. PubMed ID: 26454093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach.
    Ding YL; Lyu YC; Leong MK
    Toxicol In Vitro; 2017 Apr; 40():102-114. PubMed ID: 28027902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Read-Across Tools.
    Manganelli S; Benfenati E
    Methods Mol Biol; 2016; 1425():305-22. PubMed ID: 27311471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benchmark data set for in silico prediction of Ames mutagenicity.
    Hansen K; Mika S; Schroeter T; Sutter A; ter Laak A; Steger-Hartmann T; Heinrich N; Müller KR
    J Chem Inf Model; 2009 Sep; 49(9):2077-81. PubMed ID: 19702240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals.
    Contrera JF
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):285-93. PubMed ID: 23969001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potent mutagenicity in the Ames test of 2-cyano-4-nitroaniline and 2,6-dicyano-4-nitroaniline, components of disperse dyes.
    Josephy PD; Zahid M; Dhanoa J; de Souza GB; Groom H; Lambie M
    Environ Mol Mutagen; 2016 Jan; 57(1):10-6. PubMed ID: 26394367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current trends in read-across applications for chemical risk assessments and chemical registrations in the Republic of Korea.
    Lee SH; Kim J; Kim J; Park J; Park S; Kim KB; Lee BM; Kwon S
    J Toxicol Environ Health B Crit Rev; 2022 Nov; 25(8):393-404. PubMed ID: 36250612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.