BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31374414)

  • 1. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene.
    Bu Q; Chen K; Xie W; Liu Y; Cao M; Kong X; Chu Q; Mao H
    Bioresour Technol; 2019 Nov; 291():121860. PubMed ID: 31374414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating.
    Bu Q; Cao M; Wang M; Zhang X; Mao H
    Sci Total Environ; 2021 Feb; 754():142174. PubMed ID: 32916498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.
    Fan L; Chen P; Zhang Y; Liu S; Liu Y; Wang Y; Dai L; Ruan R
    Bioresour Technol; 2017 Feb; 225():199-205. PubMed ID: 27894038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology.
    Neha S; Remya N
    J Environ Manage; 2021 Nov; 297():113345. PubMed ID: 34329909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors.
    Yerrayya A; Suriapparao DV; Natarajan U; Vinu R
    Bioresour Technol; 2018 Dec; 270():519-528. PubMed ID: 30248651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on characteristics of the bio-oil from microwave-assisted pyrolysis of lignocellulose and triacylglycerol.
    Dai L; Wang Y; Liu Y; Ruan R; Yu Z; Jiang L
    Sci Total Environ; 2019 Apr; 659():95-100. PubMed ID: 30597473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior.
    Duan D; Ruan R; Wang Y; Liu Y; Dai L; Zhao Y; Zhou Y; Wu Q
    Bioresour Technol; 2018 Mar; 251():57-62. PubMed ID: 29268151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production.
    Wang S; Li Z; Bai X; Yi W; Fu P
    Bioresour Technol; 2019 Apr; 278():66-72. PubMed ID: 30682638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.
    Ren S; Lei H; Wang L; Bu Q; Chen S; Wu J; Julson J; Ruan R
    Bioresour Technol; 2013 May; 135():659-64. PubMed ID: 22840200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil.
    Zhang X; Yu Z; Lu X; Ma X
    Bioresour Technol; 2021 Jan; 319():124191. PubMed ID: 33022438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing production of hydrocarbon-rich bio-oil from biomass via catalytic fast pyrolysis coupled with advanced oxidation process pretreatment.
    Wang J; Zhang B; Shujaa Aldeen A; Mwenya S; Cheng H; Xu Z; Zhang H
    Bioresour Technol; 2022 Sep; 359():127450. PubMed ID: 35697262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Kinetic Study on Lignin Depolymerization in Water/Formic Acid System.
    Wang Q; Guan S; Shen D
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28974020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of combined pretreatments on the pyrolysis of corn stalk.
    Zeng K; He X; Yang H; Wang X; Chen H
    Bioresour Technol; 2019 Jun; 281():309-317. PubMed ID: 30826517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave catalytic co-pyrolysis of Chlorella vulgaris and high density polyethylene over activated carbon supported monometallic: Characteristics and bio-oil analysis.
    Chen C; Fan D; Ling H; Huang X; Yang G; Cai D; Zhao J; Bi Y
    Bioresour Technol; 2022 Nov; 363():127881. PubMed ID: 36067896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution.
    Huang S; Qin J; Chen T; Yi C; Zhang S; Zhou Z; Zhou N
    Sci Total Environ; 2022 Jan; 802():149752. PubMed ID: 34454148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects.
    Tang Z; Chen W; Chen Y; Yang H; Chen H
    Bioresour Technol; 2019 Feb; 274():145-152. PubMed ID: 30502605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production.
    Dai L; Wang Y; Liu Y; Ruan R
    Environ Res; 2020 Mar; 182():108988. PubMed ID: 31821986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.
    Duan D; Wang Y; Dai L; Ruan R; Zhao Y; Fan L; Tayier M; Liu Y
    Bioresour Technol; 2017 Oct; 241():207-213. PubMed ID: 28570885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of soybean soapstock for hydrocarbon bio-oil over a microwave-responsive catalyst in a series microwave system.
    Wu Q; Jiang L; Wang Y; Dai L; Liu Y; Zou R; Tian X; Ke L; Yang X; Ruan R
    Bioresour Technol; 2021 Dec; 341():125800. PubMed ID: 34438288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating pyrolysis and ex-situ catalytic reforming by microwave heating to produce hydrocarbon-rich bio-oil from soybean soapstock.
    Jiang L; Wang Y; Dai L; Yu Z; Wu Q; Zhao Y; Liu Y; Ruan R; Ke L; Peng Y; Xia D; Jiang L
    Bioresour Technol; 2020 Apr; 302():122843. PubMed ID: 32006926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.