BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31374617)

  • 1. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotics-assisted visual-motor training influences arm position sense in three-dimensional space.
    Valdés BA; Khoshnam M; Neva JL; Menon C
    J Neuroeng Rehabil; 2020 Jul; 17(1):96. PubMed ID: 32664955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of upper limb position sense using an exoskeleton and a virtual reality display.
    Deblock-Bellamy A; Batcho CS; Mercier C; Blanchette AK
    J Neuroeng Rehabil; 2018 Mar; 15(1):24. PubMed ID: 29548326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted training to improve proprioception does benefit from added vibro-tactile feedback.
    Cuppone A; Squeri V; Semprini M; Konczak J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():258-61. PubMed ID: 26736249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual vs vibrotactile feedback for posture assessment during upper-limb robot-aided rehabilitation.
    Scotto di Luzio F; Lauretti C; Cordella F; Draicchio F; Zollo L
    Appl Ergon; 2020 Jan; 82():102950. PubMed ID: 31542573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sensorimotor effects of a lower limb proprioception training intervention in individuals with a spinal cord injury.
    Qaiser T; Eginyan G; Chan F; Lam T
    J Neurophysiol; 2019 Dec; 122(6):2364-2371. PubMed ID: 31664888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.
    Contu S; Hussain A; Kager S; Budhota A; Deshmukh VA; Kuah CWK; Yam LHL; Xiang L; Chua KSG; Masia L; Campolo D
    PLoS One; 2017; 12(11):e0183257. PubMed ID: 29161264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke.
    Vahdat S; Darainy M; Thiel A; Ostry DJ
    Neurorehabil Neural Repair; 2019 Jan; 33(1):70-81. PubMed ID: 30595082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
    Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J
    J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors.
    Elangovan N; Yeh IL; Holst-Wolf J; Konczak J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke.
    Kuczynski AM; Kirton A; Semrau JA; Dukelow SP
    J Neuroeng Rehabil; 2021 May; 18(1):80. PubMed ID: 33980254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision does not always help stroke survivors compensate for impaired limb position sense.
    Herter TM; Scott SH; Dukelow SP
    J Neuroeng Rehabil; 2019 Oct; 16(1):129. PubMed ID: 31666135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial proprioceptive feedback for myoelectric control.
    Pistohl T; Joshi D; Ganesh G; Jackson A; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):498-507. PubMed ID: 25216484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The independence of deficits in position sense and visually guided reaching following stroke.
    Dukelow SP; Herter TM; Bagg SD; Scott SH
    J Neuroeng Rehabil; 2012 Oct; 9():72. PubMed ID: 23035968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-aided developmental assessment of wrist proprioception in children.
    Marini F; Squeri V; Morasso P; Campus C; Konczak J; Masia L
    J Neuroeng Rehabil; 2017 Jan; 14(1):3. PubMed ID: 28069028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.