These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 31374628)
1. Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation. Goergen R; Valdiero AC; Rasia LA; Oberdorfer M; de Souza JP; Goncalves RS IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():187-192. PubMed ID: 31374628 [TBL] [Abstract][Full Text] [Related]
2. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
3. Force control of wire driving lower limb rehabilitation robot. Zou Y; Ma H; Han Z; Song Y; Liu K Technol Health Care; 2018; 26(S1):399-408. PubMed ID: 29758963 [TBL] [Abstract][Full Text] [Related]
4. Design and evaluation of a modular lower limb exoskeleton for rehabilitation. Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860 [TBL] [Abstract][Full Text] [Related]
5. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach. Gupta S; Agrawal A; Singla E Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593 [TBL] [Abstract][Full Text] [Related]
6. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. Molteni F; Gasperini G; Cannaviello G; Guanziroli E PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804 [TBL] [Abstract][Full Text] [Related]
7. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
8. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation]. Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106 [TBL] [Abstract][Full Text] [Related]
9. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters. Chen W; Li Z; Cui X; Zhang J; Bai S Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848 [TBL] [Abstract][Full Text] [Related]
10. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
11. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities. Eiammanussakul T; Sangveraphunsiri V J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109 [TBL] [Abstract][Full Text] [Related]
12. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints. He Y; Liu J; Li F; Cao W; Wu X Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860 [TBL] [Abstract][Full Text] [Related]
13. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115 [TBL] [Abstract][Full Text] [Related]
14. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
15. A passively safe cable driven upper limb rehabilitation exoskeleton. Chen Y; Fan J; Zhu Y; Zhao J; Cai H Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484 [TBL] [Abstract][Full Text] [Related]
16. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation. Wu KY; Su YY; Yu YL; Lin KY; Lan CC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880 [TBL] [Abstract][Full Text] [Related]
17. Active Neural Network Control for a Wearable Upper Limb Rehabilitation Exoskeleton Robot Driven by Pneumatic Artificial Muscles. Zhang H; Fan J; Qin Y; Tian M; Han J IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2589-2597. PubMed ID: 39012735 [TBL] [Abstract][Full Text] [Related]
18. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571 [TBL] [Abstract][Full Text] [Related]
19. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
20. Development of a "transparent operation mode" for a lower-limb exoskeleton designed for children with cerebral palsy. Andrade RM; Sapienza S; Bonato P IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():512-517. PubMed ID: 31374681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]