These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31374628)

  • 21. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Middleware for an Exoskeleton Assisting Upper Limb Movement.
    Strzelczyk P; Tomczewski K; Wrobel K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation.
    Liu Q; Liu Y; Li Y; Zhu C; Meng W; Ai Q; Xie SQ
    Front Neurorobot; 2021; 15():745531. PubMed ID: 34790109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton.
    Gui K; Liu H; Zhang D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation.
    Miller-Jackson TM; Natividad RF; Lim DYL; Hernandez-Barraza L; Ambrose JW; Yeow RC
    Front Robot AI; 2022; 9():835237. PubMed ID: 35572371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation.
    Narayan J; Kumar Dwivedy S
    Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton.
    Wang J; Fei Y; Chen W
    Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-Limb Rehabilitation Robot Using Impedance Control for Patients after Stroke.
    Guang H; Ji L; Shi Y; Misgeld BJE
    J Healthc Eng; 2018; 2018():8647591. PubMed ID: 29850004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dynamic model of a device with a parallel-serial structure to support the human lower limb.
    Ostaszewski M; Gosiewski Z
    Technol Health Care; 2018; 26(S2):577-594. PubMed ID: 29843281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint stiffness modulation of compliant actuators for lower limb exoskeletons.
    Gonzalez-Vargas J; Shimoda S; Asin-Prieto G; Pons JL; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1287-1292. PubMed ID: 28813998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; García-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.
    Samadi B; Achiche S; Parent A; Ballaz L; Chouinard U; Raison M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1519-24. PubMed ID: 26980164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.
    Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J
    Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device.
    Miao Q; Zhang M; Wang Y; Xie SQ
    J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.