These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31374635)

  • 21. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-Autonomous Tongue Control of an Assistive Robotic Arm for Individuals with Quadriplegia.
    Hildebrand M; Bonde F; Kobborg RVN; Andersen C; Norman AF; Thogersen M; Bengtson SH; Dosen S; Struijk NSLA
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():157-162. PubMed ID: 31374623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An sEMG-based Interface to give People with Severe Muscular Atrophy control over Assistive Devices.
    Vogel J; Hagengruber A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2136-2141. PubMed ID: 30440826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel virtual robotic platform for controlling six degrees of freedom assistive devices with body-machine interfaces.
    Augenstein TE; Nagalla D; Mohacey A; Cubillos LH; Lee MH; Ranganathan R; Krishnan C
    Comput Biol Med; 2024 Aug; 178():108778. PubMed ID: 38925086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ethical challenges in the use of social service robots for elderly people.
    Körtner T
    Z Gerontol Geriatr; 2016 Jun; 49(4):303-7. PubMed ID: 27220734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing User Needs and Requirements for Assistive Robots at Home.
    Werner K; Werner F
    Stud Health Technol Inform; 2015; 217():174-9. PubMed ID: 26294470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robot services for elderly with cognitive impairment: testing usability of graphical user interfaces.
    Granata C; Pino M; Legouverneur G; Vidal JS; Bidaud P; Rigaud AS
    Technol Health Care; 2013; 21(3):217-31. PubMed ID: 23792795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a wearable interface for lightweight robotic arm for people with mobility impairments.
    Baldi TL; Spagnoletti G; Dragusanu M; Prattichizzo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1567-1573. PubMed ID: 28814043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Residual Movement Classification Based User Interface for Control of Assistive Devices by Persons With Complete Tetraplegia.
    Fonseca L; Guiraud D; Hiairrassary A; Fattal C; Azevedo-Coste C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():569-578. PubMed ID: 35235517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved head direction command classification using an optimised Bayesian neural network.
    Nguyen ST; Nguyen HT; Taylor PB; Middleton J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5679-82. PubMed ID: 17945910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing service delivering, improving quality of life, preserving independence through assistive technology.
    Annicchiarico R
    Stud Health Technol Inform; 2012; 180():14-8. PubMed ID: 22874143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-invasive control interfaces for intention detection in active movement-assistive devices.
    Lobo-Prat J; Kooren PN; Stienen AH; Herder JL; Koopman BF; Veltink PH
    J Neuroeng Rehabil; 2014 Dec; 11():168. PubMed ID: 25516421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating control of multiple assistive devices: a retrospective review.
    Guerette P; Sumi E
    Assist Technol; 1994; 6(1):67-76. PubMed ID: 10172078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-dependent differences in learning to control a robot arm using a body-machine interface.
    Ranganathan R; Lee MH; Padmanabhan MR; Aspelund S; Kagerer FA; Mukherjee R
    Sci Rep; 2019 Feb; 9(1):1960. PubMed ID: 30760779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of user preference over shared-control paradigms for a robotic wheelchair.
    Erdogan A; Argall BD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1106-1111. PubMed ID: 28813969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
    Ficocelli M; Terao J; Nejat G
    IEEE Trans Cybern; 2016 Dec; 46(12):2911-2923. PubMed ID: 26552105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Middlesex University rehabilitation robot.
    Parsons B; White A; Prior S; Warner P
    J Med Eng Technol; 2005; 29(4):151-62. PubMed ID: 16012066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A human-oriented framework for developing assistive service robots.
    McGinn C; Cullinan MF; Culleton M; Kelly K
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):293-304. PubMed ID: 28537814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The feasibility of an automatic prompting system in assisting people with traumatic brain injury in cooking tasks.
    Wang J; Mahajan HP; Toto PE; McCue MP; Ding D
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):817-825. PubMed ID: 30318931
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.