BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31374649)

  • 1. Comparison of Two Series Elastic Actuator Designs Incorporated into a Shoulder Exoskeleton.
    Casas R; Chen T; Lum PS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():317-322. PubMed ID: 31374649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Shoulder Mechanism for Assisting Upper Arm Function with Distally Located Actuators.
    Jones M; Bouffard C; Hejrati B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6233-6236. PubMed ID: 31947267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying LDA-based pattern recognition to predict isometric shoulder and elbow torque generation in individuals with chronic stroke with moderate to severe motor impairment.
    Kopke JV; Hargrove LJ; Ellis MD
    J Neuroeng Rehabil; 2019 Mar; 16(1):35. PubMed ID: 30836971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of shoulder joint torques in individuals with chronic stroke mirrors controls, with additional non-load-dependent negative effects in a combined-torque task.
    Kopke JV; Hargrove LJ; Ellis MD
    J Neuroeng Rehabil; 2021 Sep; 18(1):134. PubMed ID: 34496876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
    Sarkisian SV; Gabert L; Lenzi T
    Wearable Technol; 2023; 4():e25. PubMed ID: 38510590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Inverse Kinematics of a Redundant 4R Exoskeleton Shoulder Joint.
    Keemink AQL; van Oort G; Wessels M; Stienen AHA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):817-829. PubMed ID: 29641386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints.
    Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comfort and acceptability of various immobilization positions using a shoulder external rotation and abduction brace.
    Hatta T; Yamamoto N; Sano H; Itoi E
    J Orthop Sci; 2017 Mar; 22(2):285-288. PubMed ID: 27863887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and kinetic functional requirements for industrial exoskeletons for lifting tasks and overhead lifting.
    Huysamen K; Power V; O'Sullivan L
    Ergonomics; 2020 Jul; 63(7):818-830. PubMed ID: 32320343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of a torque-controllable actuator for knee assistance during sit-to-stand.
    Shepherd MK; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2228-2231. PubMed ID: 28324960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.