BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31374664)

  • 1. Bio-inspired design and validation of the Efficient Lockable Spring Ankle (ELSA) prosthesis.
    Heremans F; Vijayakumar S; Bouri M; Dehez B; Ronsse R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():411-416. PubMed ID: 31374664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an energy efficient transfemoral prosthesis using lockable parallel springs and electrical energy transfer.
    Heremans F; Ronsse R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1305-1312. PubMed ID: 28814001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation.
    Cherelle P; Grosu V; Cestari M; Vanderborght B; Lefeber D
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):145. PubMed ID: 28105954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design optimization of powered ankle prosthesis to reduce peak power requirement.
    Bilal M; Rizwan M; Maqbool HF; Ahsan M; Raza A
    Sci Prog; 2022; 105(3):368504221117895. PubMed ID: 35938190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Walking Energy Efficiency in Transtibial Amputees Through the Integration of a Low-Power Actuator in an ESAR Foot.
    Mazzarini A; Fagioli I; Eken H; Livolsi C; Ciapetti T; Maselli A; Piazzini M; Macchi C; Davalli A; Gruppioni E; Trigili E; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1397-1406. PubMed ID: 38507380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The CYBERLEGs Beta-Prosthesis.
    Flynn L; Geeroms J; Jimenez-Fabian R; Heins S; Vanderborght B; Munih M; Molino Lova R; Vitiello N; Lefeber D
    Front Neurorobot; 2018; 12():80. PubMed ID: 30564111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A powered prosthetic intervention for bilateral transfemoral amputees.
    Lawson BE; Ruhe B; Shultz A; Goldfarb M
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1042-50. PubMed ID: 25014950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic cost of level-ground walking with a robotic transtibial prosthesis combining push-off power and nonlinear damping behaviors: preliminary results.
    Yanggang Feng ; Jinying Zhu ; Qining Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5063-5066. PubMed ID: 28269406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Powered Ankle-Foot Prostheses.
    Chumacero E; Masud AA; Isik D; Shen CL; Chyu MC
    Crit Rev Biomed Eng; 2018; 46(2):93-108. PubMed ID: 30055526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Semi-Powered Ankle Prosthesis and Unified Controller for Level and Sloped Walking.
    Bartlett HL; King ST; Goldfarb M; Lawson BE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():320-329. PubMed ID: 33400653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation.
    Major MJ; Twiste M; Kenney LP; Howard D
    J Rehabil Res Dev; 2016; 53(6):839-852. PubMed ID: 28273321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of Optimized Prosthetic Ankle Designs That Are Based on a Hydraulic Variable Displacement Actuator (VDA).
    Gardiner J; Bari AZ; Kenney L; Twiste M; Moser D; Zahedi S; Howard D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2418-2426. PubMed ID: 29220324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.
    Eslamy M; Grimmer M; Rinderknecht S; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650362. PubMed ID: 24187181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of toe joint stiffness and toe shape on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Bioinspir Biomim; 2018 Oct; 13(6):066007. PubMed ID: 30187893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.