BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31374677)

  • 1. Multi-Compliance Printing Techniques for the Fabrication of Customisable Hand Exoskeletons.
    Sarwar W; Harwin W; Janko B; Bell G
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():488-493. PubMed ID: 31374677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexo-glove: A 3D Printed Soft Exoskeleton Robotic Glove for Impaired Hand Rehabilitation and Assistance.
    Mohammadi A; Lavranos J; Choong P; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2120-2123. PubMed ID: 30440822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexoskeleton Printing Enables Versatile Fabrication of Hybrid Soft and Rigid Robots.
    Jiang M; Zhou Z; Gravish N
    Soft Robot; 2020 Dec; 7(6):770-778. PubMed ID: 32255734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use.
    Sarac M; Solazzi M; Frisoli A
    IEEE Trans Haptics; 2019; 12(4):400-413. PubMed ID: 31251193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation.
    Lei Cui ; Phan A; Allison G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4627-30. PubMed ID: 26737325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Physical Human-Robot Interaction with Spring-and Elastomer-Based Series Elastic Actuators.
    Jarrett C; McDaid AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1697-1700. PubMed ID: 30440722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Variable Stiffness Compliant Finger Exoskeleton for Rehabilitation Based on Electromagnet Control.
    Liang R; Xu G; Li M; Zhang S; Luo A; Tao T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3926-3929. PubMed ID: 30441219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective 3-fingered augmenting exoskeleton for the human hand.
    Gearhart CJ; Varone B; Stella MH; BuSha BF
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():590-593. PubMed ID: 28268399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Sensing for Lower Limb Soft Exoskeletons: Recent Progress and Challenges.
    Totaro M; Di Natali C; Bernardeschi I; Ortiz J; Beccai L
    Adv Exp Med Biol; 2019; 1170():69-85. PubMed ID: 32067203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing Technology in Design of Pharmaceutical Products.
    Ameeduzzafar ; Alruwaili NK; Rizwanullah M; Abbas Bukhari SN; Amir M; Ahmed MM; Fazil M
    Curr Pharm Des; 2018; 24(42):5009-5018. PubMed ID: 30652636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assistance Robotics and Biosensors 2019.
    Úbeda A; Torres F; Puente ST
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton.
    Yang C; Wei Q; Wu X; Ma Z; Chen Q; Wang X; Wang H; Fan W
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.