These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31374677)

  • 21. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance.
    Heung KHL; Tang ZQ; Ho L; Tung M; Li Z; Tong RKY
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():65-70. PubMed ID: 31374608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-stage design framework for the development of task-specific robotic exoskeletons.
    Carmichael MG; Khonasty R; Dikai Liu
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1176-80. PubMed ID: 26736476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilising three-dimensional printing techniques when providing unique assistive devices: A case report.
    Day SJ; Riley SP
    Prosthet Orthot Int; 2018 Feb; 42(1):45-49. PubMed ID: 29224416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exoskeletons in MS rehabilitation are ready for widespread use in clinical practice: No.
    Swinnen E; De Keersmaecker E; Beckwée D
    Mult Scler; 2022 Oct; 28(11):1669-1670. PubMed ID: 35491878
    [No Abstract]   [Full Text] [Related]  

  • 27. Exoskeletons in MS rehabilitation are ready for widespread use in clinical practice: Yes.
    Calabrò RS
    Mult Scler; 2022 Oct; 28(11):1667-1668. PubMed ID: 35792175
    [No Abstract]   [Full Text] [Related]  

  • 28. Exoskeletons in MS rehabilitation are ready for widespread use in clinical practice: Commentary.
    DeLuca J; Sandroff BM
    Mult Scler; 2022 Oct; 28(11):1671-1672. PubMed ID: 35792162
    [No Abstract]   [Full Text] [Related]  

  • 29. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Joint stiffness modulation of compliant actuators for lower limb exoskeletons.
    Gonzalez-Vargas J; Shimoda S; Asin-Prieto G; Pons JL; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1287-1292. PubMed ID: 28813998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a "transparent operation mode" for a lower-limb exoskeleton designed for children with cerebral palsy.
    Andrade RM; Sapienza S; Bonato P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():512-517. PubMed ID: 31374681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR; Witkowski M; Vitiello N; Birbaumer N
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping.
    Cheng T; Wood D; Kiesewetter L; Özdemir E; Antorveza K; Menges A
    Bioinspir Biomim; 2021 Nov; 16(5):. PubMed ID: 34198272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Soft Exosuit for Flexible Upper-Extremity Rehabilitation.
    Lessard S; Pansodtee P; Robbins A; Trombadore JM; Kurniawan S; Teodorescu M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1604-1617. PubMed ID: 29994617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating anatomical wrist joint motion with a robotic exoskeleton.
    Rose CG; Kann CK; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1437-1442. PubMed ID: 28814022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.