These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31374682)

  • 1. A Soft+Rigid Hybrid Exoskeleton Concept in Scissors-Pendulum Mode: A Suit for Human State Sensing and an Exoskeleton for Assistance.
    Ugurlu B; Acer M; Barkana DE; Gocek I; Kucukyilmaz A; Arslan YZ; Basturk H; Samur E; Ugur E; Unal R; Bebek O
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():518-523. PubMed ID: 31374682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.
    Wang L; Du Z; Dong W; Shen Y; Zhao G
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29562684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton.
    Wang J; Fei Y; Chen W
    Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.
    Morris L; Diteesawat RS; Rahman N; Turton A; Cramp M; Rossiter J
    J Neuroeng Rehabil; 2023 Jan; 20(1):18. PubMed ID: 36717869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton.
    Wang S; Zhang B; Yu Z; Yan Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a "transparent operation mode" for a lower-limb exoskeleton designed for children with cerebral palsy.
    Andrade RM; Sapienza S; Bonato P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():512-517. PubMed ID: 31374681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Soft Wearable Robotic Suit for Ankle and Hip Assistance: a Preliminary Study.
    Jin S; Guo S; Hashimoto K; Xiong X; Yamamoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1867-1870. PubMed ID: 30440760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller.
    Narayan J; Abbas M; Dwivedy SK
    Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
    Luo S; Androwis G; Adamovich S; Su H; Nunez E; Zhou X
    Front Robot AI; 2021; 8():702845. PubMed ID: 34350214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton.
    Jebri A; Madani T; Djouani K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoscore: A Design Tool to Evaluate Factors Associated With Technology Acceptance of Soft Lower Limb Exosuits by Older Adults.
    Shore L; Power V; Hartigan B; Schülein S; Graf E; de Eyto A; O'Sullivan L
    Hum Factors; 2020 May; 62(3):391-410. PubMed ID: 31419179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton.
    Cao W; Ma Y; Chen C; Zhang J; Wu X
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):384-394. PubMed ID: 35536795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity.
    Ismail R; Ariyanto M; Setiawan JD; Hidayat T; Paryanto ; Nuswantara LK
    HardwareX; 2024 Jun; 18():e00537. PubMed ID: 38784668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. User satisfaction with lower limb wearable robotic exoskeletons.
    Poritz JMP; Taylor HB; Francisco G; Chang SH
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):322-327. PubMed ID: 30786789
    [No Abstract]   [Full Text] [Related]  

  • 20. A Modular Design for Distributed Measurement of Human-Robot Interaction Forces in Wearable Devices.
    Ghonasgi K; Yousaf SN; Esmatloo P; Deshpande AD
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.