BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31374689)

  • 1. Assessment of an On-board Classifier for Activity Recognition on an Active Back-Support Exoskeleton.
    Poliero T; Toxiri S; Anastasi S; Monica L; Ortiz DGCJ
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():559-564. PubMed ID: 31374689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking.
    Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H
    Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration-based Assistive Strategy to Control a Back-support Exoskeleton for Load Handling: Preliminary Evaluation.
    Lazzaroni M; Toxiri S; Caldwell DG; Anastasi S; Monica L; Momi E; Ortiz J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():625-630. PubMed ID: 31374700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton.
    Nguyen VQ; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exoskeletons for industrial application and their potential effects on physical work load.
    de Looze MP; Bosch T; Krause F; Stadler KS; O'Sullivan LW
    Ergonomics; 2016 May; 59(5):671-81. PubMed ID: 26444053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Exoskeletons for restoring motor functions].
    Pantera É
    Soins; 2019; 64(837):52-55. PubMed ID: 31345312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Pilot Evaluation of a Prototype Sensorized Trunk Exoskeleton.
    Hass D; Miller BA; Dai B; Novak D; Gorsic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4537-4541. PubMed ID: 34892226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards low back support with a passive biomimetic exo-spine.
    Naf MB; De Rijcke L; Guerrero CR; Millard M; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1165-1170. PubMed ID: 28813979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work.
    Bosch T; van Eck J; Knitel K; de Looze M
    Appl Ergon; 2016 May; 54():212-7. PubMed ID: 26851481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian Mixture Models for Control of Quasi-Passive Spinal Exoskeletons.
    Jamšek M; Petrič T; Babič J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers.
    Di Natali C; Poliero T; Fanti V; Sposito M; Caldwell DG
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling.
    Di Natali C; Chini G; Toxiri S; Monica L; Anastasi S; Draicchio F; Caldwell DG; Ortiz J
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33799947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actuation Selection for Assistive Exoskeletons: Matching Capabilities to Task Requirements.
    Calanca A; Toxiri S; Costanzi D; Sartori E; Vicario R; Poliero T; Natali CD; Caldwell DG; Fiorini P; Ortiz J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):2053-2062. PubMed ID: 32746325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton.
    Herodotou P; Wang S
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():331-336. PubMed ID: 31374651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions.
    Kuber PM; Alemi MM; Rashedi E
    Ann Biomed Eng; 2023 Aug; 51(8):1665-1682. PubMed ID: 37248409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.