These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31374695)

  • 1. Balance Control Strategies during Standing in a Locked-Ankle Passive Exoskeleton.
    Fasola J; Vouga T; Baud R; Bleuler H; Bouri M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():593-598. PubMed ID: 31374695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired standing balance controller for a full-mobilization exoskeleton.
    Baud R; Fasola J; Vouga T; Ijspeert A; Bouri M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():849-854. PubMed ID: 31374736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a powered ankle-foot orthosis on perturbed standing balance.
    Emmens AR; van Asseldonk EHF; van der Kooij H
    J Neuroeng Rehabil; 2018 Jun; 15(1):50. PubMed ID: 29914505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on Postural Kinematics of Performing a Cognitive Task During Upright Standing.
    Hagio K; Obata H; Nakazawa K
    Percept Mot Skills; 2020 Aug; 127(4):639-650. PubMed ID: 32340552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Exoskeleton Assistance at the Ankle on Sensory Integration During Standing Balance.
    Canete S; Wilson EB; Wright WG; Jacobs DA
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4428-4438. PubMed ID: 37934648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: A simulation study.
    Versteeg CS; Ting LH; Allen JL
    J Biomech; 2016 Oct; 49(14):3230-3237. PubMed ID: 27543251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural Control When Using an Industrial Lower Limb Exoskeleton: Impact of Reaching for a Working Tool and External Perturbation.
    Steinhilber B; Seibt R; Rieger MA; Luger T
    Hum Factors; 2022 Jun; 64(4):635-648. PubMed ID: 32988243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of age and surface instability on the control of the center of mass.
    van den Bogaart M; Bruijn SM; Spildooren J; van Dieën JH; Meyns P
    Hum Mov Sci; 2022 Apr; 82():102930. PubMed ID: 35123153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of two passive back-support exoskeletons on postural balance during quiet stance and functional limits of stability.
    Park JH; Kim S; Nussbaum MA; Srinivasan D
    J Electromyogr Kinesiol; 2021 Apr; 57():102516. PubMed ID: 33493784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural activity of constrained subject in response to disturbance in sagittal plane.
    Mihelj M; Matjacić Z; Bajd T
    Gait Posture; 2000 Oct; 12(2):94-104. PubMed ID: 10998605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic synergy adaptation to an unstable support surface and equilibrium maintenance during forward trunk movement.
    Vernazza-Martin S; Martin N; Pellec-Muller AL; Tricon V; Massion J
    Exp Brain Res; 2006 Aug; 173(1):62-78. PubMed ID: 16552562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic and kinetic validity of the inverted pendulum model in quiet standing.
    Gage WH; Winter DA; Frank JS; Adkin AL
    Gait Posture; 2004 Apr; 19(2):124-32. PubMed ID: 15013500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between initial posture and task-level goal explain experimental variability in postural responses to perturbations of standing balance.
    Van Wouwe T; Ting LH; De Groote F
    J Neurophysiol; 2021 Feb; 125(2):586-598. PubMed ID: 33326357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent control of limb position and contact forces in cat posture.
    Lacquaniti F; Maioli C
    J Neurophysiol; 1994 Oct; 72(4):1476-95. PubMed ID: 7823081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body coordination during sit-to-stand in blind and sighted female children.
    Aylar MF; Dionisio VC; Jafarnezhadgero A; Parikhani AZ
    J Biomech; 2020 May; 104():109708. PubMed ID: 32173035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of artificially increased hip and trunk stiffness on balance control in man.
    Grüneberg C; Bloem BR; Honegger F; Allum JH
    Exp Brain Res; 2004 Aug; 157(4):472-85. PubMed ID: 15138751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case Studies in Neuroscience: A dissociation of balance and posture demonstrated by camptocormia.
    St George RJ; Gurfinkel VS; Kraakevik J; Nutt JG; Horak FB
    J Neurophysiol; 2018 Jan; 119(1):33-38. PubMed ID: 28978769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Postural Controllers for a Locked-Ankle Exoskeleton Targeting Complete SCI Users.
    Fasola J; Baud R; Vouga T; Ijspeert A; Bouri M
    Front Robot AI; 2020; 7():553828. PubMed ID: 33501317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.