BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31374696)

  • 1. 3-D Dynamic Walking Trajectory Generation for a Bipedal Exoskeleton with Underactuated Legs: A Proof of Concept.
    Soliman AF; Sendur P; Ugurlu B
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():599-604. PubMed ID: 31374696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment.
    Hong YD
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of natural arm swing motion in human bipedal walking.
    Park J
    J Biomech; 2008; 41(7):1417-26. PubMed ID: 18417138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter.
    Sado F; Yap HJ; Ghazilla RAR; Ahmad N
    PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking.
    Shirota C; Tucker MR; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():430-434. PubMed ID: 28813857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate.
    Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics analysis of human walking with load carriage.
    Yang X; Zhao G; Liu D; Zhou W; Zhao H
    Technol Health Care; 2015; 23 Suppl 2():S567-75. PubMed ID: 26410525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, Control, and Validation of a Symmetrical Hip and Straight-Legged Vertically-Compliant Bipedal Robot.
    Tang J; Zhu Y; Gan W; Mou H; Leng J; Li Q; Yu Z; Zhang J
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic walking trajectory generation of humanoid robot on an inclined surface using Fourier series.
    Park IW; Kim JY
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7533-9. PubMed ID: 25942821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.