These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31374700)

  • 1. Acceleration-based Assistive Strategy to Control a Back-support Exoskeleton for Load Handling: Preliminary Evaluation.
    Lazzaroni M; Toxiri S; Caldwell DG; Anastasi S; Monica L; Momi E; Ortiz J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():625-630. PubMed ID: 31374700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rationale, Implementation and Evaluation of Assistive Strategies for an Active Back-Support Exoskeleton.
    Toxiri S; Koopman AS; Lazzaroni M; Ortiz J; Power V; de Looze MP; O'Sullivan L; Caldwell DG
    Front Robot AI; 2018; 5():53. PubMed ID: 33500935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine.
    Picchiotti MT; Weston EB; Knapik GG; Dufour JS; Marras WS
    Appl Ergon; 2019 Feb; 75():1-7. PubMed ID: 30509514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and kinetic functional requirements for industrial exoskeletons for lifting tasks and overhead lifting.
    Huysamen K; Power V; O'Sullivan L
    Ergonomics; 2020 Jul; 63(7):818-830. PubMed ID: 32320343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoskeletons for industrial application and their potential effects on physical work load.
    de Looze MP; Bosch T; Krause F; Stadler KS; O'Sullivan LW
    Ergonomics; 2016 May; 59(5):671-81. PubMed ID: 26444053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Eur J Appl Physiol; 2022 Dec; 122(12):2575-2583. PubMed ID: 36074202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to quantify the assistive torque profiles generated by passive back-support exoskeletons.
    Madinei S; Kim S; Park JH; Srinivasan D; Nussbaum MA
    J Biomech; 2022 Dec; 145():111363. PubMed ID: 36332510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.
    Abdoli-E M; Stevenson JM
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):372-80. PubMed ID: 18093709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task.
    Schwartz M; Theurel J; Desbrosses K
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives of End Users on the Potential Use of Trunk Exoskeletons for People With Low-Back Pain: A Focus Group Study.
    Baltrusch SJ; Houdijk H; van Dieën JH; van Bennekom CAM; de Kruif AJTCM
    Hum Factors; 2020 May; 62(3):365-376. PubMed ID: 31914327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeleton Application to Military Manual Handling Tasks.
    Proud JK; Lai DTH; Mudie KL; Carstairs GL; Billing DC; Garofolini A; Begg RK
    Hum Factors; 2022 May; 64(3):527-554. PubMed ID: 33203237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic assessment for low back-support exoskeletons during manual handling tasks.
    Xiang X; Tanaka M; Umeno S; Kikuchi Y; Kobayashi Y
    Front Bioeng Biotechnol; 2023; 11():1289686. PubMed ID: 38026894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Passive Back-Support Exoskeleton With a Spring-Cable-Differential for Lifting Assistance.
    Ding S; Reyes FA; Bhattacharya S; Seyram O; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3781-3789. PubMed ID: 37725739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongation of the surface of the spine during lifting and lowering, and implications for design of an upper body industrial exoskeleton.
    Huysamen K; Power V; O'Sullivan L
    Appl Ergon; 2018 Oct; 72():10-16. PubMed ID: 29885720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a Back-Support Exoskeleton to Assist Carrying Activities.
    Lazzaroni M; Chini G; Draicchio F; Di Natali C; Caldwell DG; Ortiz J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks.
    Huysamen K; de Looze M; Bosch T; Ortiz J; Toxiri S; O'Sullivan LW
    Appl Ergon; 2018 Apr; 68():125-131. PubMed ID: 29409626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential exoskeleton uses for reducing low back muscular activity during farm tasks.
    Thamsuwan O; Milosavljevic S; Srinivasan D; Trask C
    Am J Ind Med; 2020 Nov; 63(11):1017-1028. PubMed ID: 32926450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.