These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31374702)

  • 1. Exploring the Capabilities of Harmony for Upper-Limb Stroke Therapy.
    Oliveira AC; Rose CG; Warburton K; Ogden EM; Whitford B; Lee RK; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():637-643. PubMed ID: 31374702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Upper-Extremity Joint Angles Using Harmony Exoskeleton.
    De Oliveira AC; Sulzer JS; Deshpande AD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():916-925. PubMed ID: 33872155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HERCULES: A Three Degree-of-Freedom Pneumatic Upper Limb Exoskeleton for Stroke Rehabilitation
    Burns M; Zavoda Z; Nataraj R; Pochiraju K; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4959-4962. PubMed ID: 33019100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Gravity Compensation on Upper Extremity Movements in Harmony Exoskeleton.
    Hailey RO; De Oliveira AC; Ghonasgi K; Whitford B; Lee RK; Rose CG; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matching Task Difficulty to Patient Ability During Task Practice Improves Upper Extremity Motor Skill After Stroke: A Proof-of-Concept Study.
    Woodbury ML; Anderson K; Finetto C; Fortune A; Dellenbach B; Grattan E; Hutchison S
    Arch Phys Med Rehabil; 2016 Nov; 97(11):1863-1871. PubMed ID: 27117385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial measurements of upper limb motion.
    Zhou H; Hu H; Tao Y
    Med Biol Eng Comput; 2006 Jun; 44(6):479-87. PubMed ID: 16937199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study.
    Lin LF; Lin YJ; Lin ZH; Chuang LY; Hsu WC; Lin YH
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):388-396. PubMed ID: 28627862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.
    Lo HS; Xie SQ
    Med Eng Phys; 2012 Apr; 34(3):261-8. PubMed ID: 22051085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic assessment of upper limb motor function after stroke.
    Balasubramanian S; Colombo R; Sterpi I; Sanguineti V; Burdet E
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S255-69. PubMed ID: 23080041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training.
    Rosenthal O; Wing AM; Wyatt JL; Punt D; Miall RC
    J Neuroeng Rehabil; 2017 Dec; 14(1):127. PubMed ID: 29208020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.