BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31374719)

  • 1. Robust Optimal Design of Energy Efficient Series Elastic Actuators: Application to a Powered Prosthetic Ankle.
    Bolivar E; Rezazadeh S; Summers T; Gregg RD
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():740-747. PubMed ID: 31374719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing Energy Consumption and Peak Power of Series Elastic Actuators: A Convex Optimization Framework for Elastic Element Design.
    Bolívar Nieto EA; Rezazadeh S; Gregg RD
    IEEE ASME Trans Mechatron; 2019 Jun; 24(3):1334-1345. PubMed ID: 31649476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption.
    Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.
    Eslamy M; Grimmer M; Rinderknecht S; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650362. PubMed ID: 24187181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design optimization of powered ankle prosthesis to reduce peak power requirement.
    Bilal M; Rizwan M; Maqbool HF; Ahsan M; Raza A
    Sci Prog; 2022; 105(3):368504221117895. PubMed ID: 35938190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators.
    Elery T; Rezazadeh S; Nesler C; Gregg RD
    IEEE Trans Robot; 2020 Dec; 36(6):1649-1668. PubMed ID: 33299386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
    Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B
    Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A GENERAL FRAMEWORK FOR MINIMIZING ENERGY CONSUMPTION OF SERIES ELASTIC ACTUATORS WITH REGENERATION.
    Bolívar E; Rezazadeh S; Gregg R
    Proc ASME Dyn Syst Control Conf; 2017; 1():. PubMed ID: 29170721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuously-variable series-elastic actuator.
    Mooney L; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650402. PubMed ID: 24187221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hopping frequency influences elastic energy reuse with joint series elastic actuators.
    Mohammadi Nejad Rashty A; Grimmer M; Seyfarth A
    J Biomech; 2021 Apr; 119():110319. PubMed ID: 33636462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient robotic tendon for gait assistance.
    Hollander KW; Ilg R; Sugar TG; Herring D
    J Biomech Eng; 2006 Oct; 128(5):788-91. PubMed ID: 16995768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation.
    Cherelle P; Grosu V; Cestari M; Vanderborght B; Lefeber D
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):145. PubMed ID: 28105954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter estimation for a prosthetic ankle.
    Singer E; Ishai G; Kimmel E
    Ann Biomed Eng; 1995; 23(5):691-6. PubMed ID: 7503469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling, design, and optimization of Mindwalker series elastic joint.
    Wang S; Meijneke C; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.
    Rossa C; Lozada J; Micaelli A
    IEEE Trans Haptics; 2014; 7(4):442-53. PubMed ID: 25122593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.