These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31374729)

  • 1. An Adaptive Socket Attaches onto Residual Limb Using Smart Polymers for Upper Limb Prosthesis.
    Shallal C; Li L; Nguyen H; Aronshtein F; Lee SH; Zhu J; Thakor N
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():803-808. PubMed ID: 31374729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing an Adaptive Prosthetic Socket Controller Using H-Infinity Loop Shaping Synthesis.
    Nguyen H; Shallal C; Thakor N
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1266-1271. PubMed ID: 31374803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamically Mapping Socket Loading Conditions During Real Time Operation of an Upper Limb Prosthesis.
    Fu J; Nguyen H; Kim DW; Shallal C; Cho SM; Osborn L; Thakor N
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3930-3933. PubMed ID: 30441220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing and actuation technologies for smart socket prostheses.
    Gupta S; Loh KJ; Pedtke A
    Biomed Eng Lett; 2020 Feb; 10(1):103-118. PubMed ID: 32175132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive socket with auto-adjusting air bladders for interfacing transhumeral prosthesis: A pilot study.
    Gu Y; Yang D; Osborn L; Candrea D; Liu H; Thakor N
    Proc Inst Mech Eng H; 2019 Aug; 233(8):812-822. PubMed ID: 31165676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum-assisted socket suspension compared with pin suspension for lower extremity amputees: effect on fit, activity, and limb volume.
    Klute GK; Berge JS; Biggs W; Pongnumkul S; Popovic Z; Curless B
    Arch Phys Med Rehabil; 2011 Oct; 92(10):1570-5. PubMed ID: 21963124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Practical Approach for Evaluation of Socket Pistoning for Lower Limb Amputees.
    Vempala V; Liu M; Kamper D; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3938-3941. PubMed ID: 30441222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of interfacial socket pressure in transhumeral prostheses: A case series.
    Schofield JS; Schoepp KR; Williams HE; Carey JP; Marasco PD; Hebert JS
    PLoS One; 2017; 12(6):e0178517. PubMed ID: 28575012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a novel prosthetic socket: assessment of the thermal performance.
    Webber CM; Davis BL
    J Biomech; 2015 May; 48(7):1294-9. PubMed ID: 25840507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional finite element model of the transibial residual limb and prosthetic socket to predict skin temperatures.
    Peery JT; Klute GK; Blevins JJ; Ledoux WR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):336-43. PubMed ID: 17009493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air microfluidics-enabled soft robotic transtibial prosthesis socket liner toward dynamic management of residual limb contact pressure and volume fluctuation.
    Lee PS; Gao RZ; Colpitts A; Murdock RW; Dittmer D; Schirm A; Tung JY; Ren CL
    Biomicrofluidics; 2022 May; 16(3):034107. PubMed ID: 35783680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method to quantify liner deformation within a prosthetic socket for below knee amputees.
    Lenz AL; Johnson KA; Bush TR
    J Biomech; 2018 Jun; 74():213-219. PubMed ID: 29678418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual-limb skin temperature in transtibial sockets.
    Peery JT; Ledoux WR; Klute GK
    J Rehabil Res Dev; 2005; 42(2):147-54. PubMed ID: 15944879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezoelectric bimorphs' characteristics as in-socket sensors for transfemoral amputees.
    El-Sayed AM; Hamzaid NA; Abu Osman NA
    Sensors (Basel); 2014 Dec; 14(12):23724-41. PubMed ID: 25513823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities.
    Biddiss E; Chau T
    Med Eng Phys; 2008 May; 30(4):403-18. PubMed ID: 17632030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of a volume-adjustable compression chamber for transradial prosthetic interface.
    Sang Y; Li X; Luo Y
    Proc Inst Mech Eng H; 2016 Jul; 230(7):650-60. PubMed ID: 27146289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical design considerations for transradial prosthetic interface: A review.
    Sang Y; Li X; Luo Y
    Proc Inst Mech Eng H; 2016 Mar; 230(3):239-50. PubMed ID: 26759485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Optimal Vibrotactile Feedback for Force-Controlled Upper Limb Myoelectric Prostheses.
    Gonzalez-Rodriguez A; Ramon JL; Morell V; Garcia GJ; Pomares J; Jara CA; Ubeda A
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive Control for an Active Prosthetic Socket informed by FEA-based Tissue Damage Risk Estimation.
    Mbithi FM; Chipperfield AJ; Steer JW; Dickinson AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2073-2076. PubMed ID: 31946309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.