BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31374740)

  • 1. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints.
    McGrath RL; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-Aided Training of Propulsion During Walking: Effects of Torque Pulses Applied to the Hip and Knee Joints During Stance.
    McGrath R; Bodt B; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2923-2932. PubMed ID: 33232239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.
    McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait Entrainment to Torque Pulses From a Hip Exoskeleton Robot.
    Lee J; Huber ME; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():656-667. PubMed ID: 35286261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking.
    Park JH; Lee Y; Madinei S; Kim S; Nussbaum MA; Srinivasan D
    Ann Biomed Eng; 2022 Aug; 50(8):964-977. PubMed ID: 35478066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.
    Miyake T; Kobayashi Y; Fujie MG; Sugano S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segment-interaction and its relevance to the control of movement during sprinting.
    Huang L; Liu Y; Wei S; Li L; Fu W; Sun Y; Feng Y
    J Biomech; 2013 Aug; 46(12):2018-23. PubMed ID: 23834897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fore-aft resistance applied at the center of mass using a novel robotic interface proportionately increases propulsive force generation in healthy nonimpaired individuals walking at a constant speed.
    Naidu A; Graham SA; Brown DA
    J Neuroeng Rehabil; 2019 Sep; 16(1):111. PubMed ID: 31492156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    J Biomech; 2019 Apr; 87():142-149. PubMed ID: 30862380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.