These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31374740)

  • 21. Phase-Synchronized Assistive Torque Control for the Correction of Kinematic Anomalies in the Gait Cycle.
    Aguirre-Ollinger G; Narayan A; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2305-2314. PubMed ID: 31567098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders.
    Devine TM; Alter KE; Damiano DL; Bulea TC
    PLoS One; 2024; 19(7):e0304087. PubMed ID: 38976710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.
    Lee SH; Lee HJ; Chang WH; Choi BO; Lee J; Kim J; Ryu GH; Kim YH
    J Neuroeng Rehabil; 2017 Nov; 14(1):123. PubMed ID: 29183379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of factors that affect hip moment impulse during gait: A systematic review.
    Inai T; Takabayashi T; Edama M; Kubo M
    Gait Posture; 2018 Mar; 61():488-492. PubMed ID: 29494823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of flexed knee gait and functional outcome of a patient who underwent knee reconstruction with a hingeless prosthesis for bone tumor resection: a case report with gait analysis and comparison with healthy subjects.
    Okita Y; Tatematsu N; Nagai K; Nakayama T; Nakamata T; Okamoto T; Toguchida J; Ichihashi N; Tsuboyama T
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):849-55. PubMed ID: 23820881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults.
    McGibbon CA; Brandon SCE; Brookshaw M; Sexton A
    Knee; 2017 Oct; 24(5):977-993. PubMed ID: 28760608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of lower extremity joint torque on gait characteristics in elderly men.
    Burnfield JM; Josephson KR; Powers CM; Rubenstein LZ
    Arch Phys Med Rehabil; 2000 Sep; 81(9):1153-7. PubMed ID: 10987153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis.
    Watelain E; Dujardin F; Babier F; Dubois D; Allard P
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1705-11. PubMed ID: 11733886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of unilateral knee immobilization on lower extremity gait mechanics.
    Lage KJ; White SC; Yack HJ
    Med Sci Sports Exerc; 1995 Jan; 27(1):8-14. PubMed ID: 7898343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of restricting the flexion-extension motion of the first metatarsophalangeal joint on human walking gait.
    Zhang J; Si Y; Zhang Y; Liu Y
    Biomed Mater Eng; 2014; 24(6):2577-84. PubMed ID: 25226960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics.
    Buford JA; Zernicke RF; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):745-55. PubMed ID: 2230921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanisms and mechanical energy of human gait initiation from the lower-limb joint level perspective.
    Zhao G; Grimmer M; Seyfarth A
    Sci Rep; 2021 Nov; 11(1):22473. PubMed ID: 34795327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training.
    Galen SS; Clarke CJ; McLean AN; Allan DB; Conway BA
    NeuroRehabilitation; 2014; 34(2):287-95. PubMed ID: 24419018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.