These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 31374745)

  • 1. A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies.
    Scheidegger WM; de Mello RC; Sierra M SD; Jimenez MF; Munera MC; Cifuentes CA; Frizera-Neto A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():905-910. PubMed ID: 31374745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Controller for a Smart Walker Based on Human-Robot Formation.
    Valadão C; Caldeira E; Bastos-Filho T; Frizera-Neto A; Carelli R
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial.
    Morone G; Annicchiarico R; Iosa M; Federici A; Paolucci S; Cortés U; Caltagirone C
    J Neuroeng Rehabil; 2016 May; 13(1):47. PubMed ID: 27225043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive derivation of basic walker-assisted gait characteristics from measured forces and moments.
    Alwan M; Wasson G; Sheth P; Ledoux A; Huang C
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2691-4. PubMed ID: 17270831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of walking ability of household walkers versus community walkers based on K-BBS, gait velocity and upright motor control.
    Joa KL; Kwon SY; Choi JW; Hong SE; Kim CH; Jung HY
    Eur J Phys Rehabil Med; 2015 Oct; 51(5):619-25. PubMed ID: 25311883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of user's navigation commands from upper body force interaction in walker assisted gait.
    Frizera Neto A; Gallego JA; Rocon E; Pons JL; Ceres R
    Biomed Eng Online; 2010 Aug; 9():37. PubMed ID: 20687921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-Robot-Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker.
    Sierra M SD; Garzón M; Múnera M; Cifuentes CA
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31262036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent control of a smart walker and its performance evaluation.
    Grondin SL; Li Q
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650346. PubMed ID: 24187165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart and Assistive Walker - ASBGo: Rehabilitation Robotics: A Smart-Walker to Assist Ataxic Patients.
    Moreira R; Alves J; Matias A; Santos C
    Adv Exp Med Biol; 2019; 1170():37-68. PubMed ID: 32067202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric passive dynamic walker.
    Honeycutt C; Sushko J; Reed KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975465. PubMed ID: 22275663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals.
    Tisserand R; Armand S; Allali G; Schnider A; Baillieul S
    Hum Mov Sci; 2018 Apr; 58():175-184. PubMed ID: 29448162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance.
    Chang YH; Sahoo N; Chen JY; Chuang SY; Lin HW
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.
    Koenig A; Novak D; Omlin X; Pulfer M; Perreault E; Zimmerli L; Mihelj M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):453-64. PubMed ID: 21827971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait-phase-dependent control using a smart walker for physical training.
    Li P; Yamada Y; Wan X; Uchiyama Y; Sato W; Yamada K; Yokoya M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():843-848. PubMed ID: 31374735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index.
    Ming D; Bai Y; Liu X; Qi H; Cheng L; Wan B; Hu Y; Wong Y; Luk KD; Leong JC
    J Neural Eng; 2009 Dec; 6(6):066007. PubMed ID: 19918110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral pelvic displacement during gait: abnormalities after stroke and changes during the first month of rehabilitation.
    Dodd KJ; Morris ME
    Arch Phys Med Rehabil; 2003 Aug; 84(8):1200-5. PubMed ID: 12917860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients.
    Cho KH; Kim MK; Lee HJ; Lee WH
    Tohoku J Exp Med; 2015 Aug; 236(4):273-80. PubMed ID: 26228205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects.
    Alwan M; Ledoux A; Wasson G; Sheth P; Huang C
    Med Eng Phys; 2007 Apr; 29(3):380-9. PubMed ID: 16843697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the functionalities of smart walkers.
    Martins M; Santos C; Frizera A; Ceres R
    Med Eng Phys; 2015 Oct; 37(10):917-28. PubMed ID: 26307456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics.
    Wonsetler EC; Bowden MG
    Top Stroke Rehabil; 2017 Jul; 24(5):394-403. PubMed ID: 28218021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.