These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31374751)
1. User-driven walking assistance: first experimental results using the MyoSuit. Haufe FL; Kober AM; Schmidt K; Sancho-Puchades A; Duarte JE; Wolf P; Riener R IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():944-949. PubMed ID: 31374751 [TBL] [Abstract][Full Text] [Related]
2. Activity-based training with the Myosuit: a safety and feasibility study across diverse gait disorders. Haufe FL; Schmidt K; Duarte JE; Wolf P; Riener R; Xiloyannis M J Neuroeng Rehabil; 2020 Oct; 17(1):135. PubMed ID: 33032627 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical Analysis Suggests Myosuit Reduces Knee Extensor Demand during Level and Incline Gait. Kim J; Kim Y; Kang S; Kim SJ Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015888 [TBL] [Abstract][Full Text] [Related]
4. An algorithm to reduce human-robot interface compliance errors in posture estimation in wearable robots. Koginov G; Sternberg K; Wolf P; Schmidt K; Duarte JE; Riener R Wearable Technol; 2022; 3():e30. PubMed ID: 38486900 [TBL] [Abstract][Full Text] [Related]
5. Guided Exploration Leads to Faster Familiarization with a Wearable Robot: First Results of an Innovative Protocol. Koginov G; Wolf P; Schmidt K; Duarte JE; Riener R IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941259 [TBL] [Abstract][Full Text] [Related]
6. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance. Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931 [TBL] [Abstract][Full Text] [Related]
7. Outside testing of wearable robots for gait assistance shows a higher metabolic benefit than testing on treadmills. Haufe FL; Duroyon EG; Wolf P; Riener R; Xiloyannis M Sci Rep; 2021 Jul; 11(1):14833. PubMed ID: 34290331 [TBL] [Abstract][Full Text] [Related]
8. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury. Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ Front Neurorobot; 2017; 11():30. PubMed ID: 28676752 [TBL] [Abstract][Full Text] [Related]
9. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals. Dionisio VC; Brown DA J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027 [TBL] [Abstract][Full Text] [Related]
10. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers. Schmidt K; Duarte JE; Grimmer M; Sancho-Puchades A; Wei H; Easthope CS; Riener R Front Neurorobot; 2017; 11():57. PubMed ID: 29163120 [TBL] [Abstract][Full Text] [Related]
11. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
12. Energy consumption and cost during walking with different modalities of assistance after stroke: a systematic review and meta-analysis. Lefeber N; De Buyzer S; Dassen N; De Keersmaecker E; Kerckhofs E; Swinnen E Disabil Rehabil; 2020 Jun; 42(12):1650-1666. PubMed ID: 30668170 [No Abstract] [Full Text] [Related]
13. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling. Smith AJJ; Lemaire ED; Nantel J PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772 [TBL] [Abstract][Full Text] [Related]
14. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots. d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594 [TBL] [Abstract][Full Text] [Related]
15. Inducing self-selected human engagement in robotic locomotion training. Collins SH; Jackson RW IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650488. PubMed ID: 24187305 [TBL] [Abstract][Full Text] [Related]
16. Enhancing walking efficiency of adolescents with neurological impairments using an exosuit for ambulatory activities of daily living. Basla C; Mariani G; Wolf P; Riener R; van Hedel HJA Front Robot AI; 2024; 11():1335733. PubMed ID: 38549947 [No Abstract] [Full Text] [Related]
17. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Lefeber N; Swinnen E; Kerckhofs E Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641 [TBL] [Abstract][Full Text] [Related]
18. Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation. Haufe FL; Kober AM; Wolf P; Riener R; Xiloyannis M J Neuroeng Rehabil; 2021 Nov; 18(1):157. PubMed ID: 34724940 [TBL] [Abstract][Full Text] [Related]
19. Usability of an exosuit in domestic and community environments. Basla C; Hungerbühler I; Meyer JT; Wolf P; Riener R; Xiloyannis M J Neuroeng Rehabil; 2022 Dec; 19(1):131. PubMed ID: 36457037 [TBL] [Abstract][Full Text] [Related]
20. Kinematics and muscle activity of individuals with incomplete spinal cord injury during treadmill stepping with and without manual assistance. Domingo A; Sawicki GS; Ferris DP J Neuroeng Rehabil; 2007 Aug; 4():32. PubMed ID: 17711590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]