These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31374755)

  • 1. Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification.
    Tryon J; Friedman E; Trejos AL
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():971-976. PubMed ID: 31374755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on Brain Electromyography Rehabilitation System Based on Data Fusion and Virtual Rehabilitation Simulation.
    Li S; Yang J
    J Med Syst; 2019 Jan; 43(2):22. PubMed ID: 30604024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion.
    Tryon J; Trejos AL
    Front Neurorobot; 2021; 15():692183. PubMed ID: 34887739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet analysis of surface electromyography to determine muscle fatigue.
    Kumar DK; Pah ND; Bradley A
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):400-6. PubMed ID: 14960116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical utility of portable electrophysiology to measure fatigue in treatment-naïve non-small cell lung cancer.
    O'Connor B; Markicevic M; Newman L; Poduval RK; Tiernan E; Hanrahan E; Cuffe S; Reilly RB; Walsh D
    Support Care Cancer; 2019 Jul; 27(7):2617-2623. PubMed ID: 30467793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detection scheme for frontalis and temporalis muscle EMG contamination of EEG data.
    Fu MJ; Daly JJ; Cavuşoğlu MC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4514-8. PubMed ID: 17946635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-Informed Neuromusculoskeletal Modelling Estimates Muscle Forces and Joint Moments During Electrical Stimulation.
    Hambly MJ; De Sousa ACC; Lloyd DG; Pizzolato C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platform for the study of virtual task-oriented motion and its evaluation by EEG and EMG biopotentials.
    Figueroa-Garcia I; Aguilar-Leal O; Hernandez-Reynoso AG; Madrigal J; Fuentes RQ; Huegel JC; Garcia-Gonzalez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1174-7. PubMed ID: 25570173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke?
    Balasubramanian S; Garcia-Cossio E; Birbaumer N; Burdet E; Ramos-Murguialday A
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2790-2797. PubMed ID: 29993449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
    Zhang Q; Hosoda R; Venture G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():21-4. PubMed ID: 24109614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait Pattern Recognition Based on Supervised Contrastive Learning Between EEG and EMG.
    Fu X; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Analysis of EEG Power Spectrum and EMG Median Power Frequency Changes after Continuous Passive Motion Mirror Therapy System.
    Park T; Lee M; Jeong T; Shin YI; Park SM
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.
    Pau JW; Xie SS; Pullan AJ
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2586-93. PubMed ID: 22911536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal imaging of cortico-muscular coherence through a novel regression technique based on multi-channel EEG and un-rectified EMG.
    Bayraktaroglu Z; von Carlowitz-Ghori K; Losch F; Nolte G; Curio G; Nikulin VV
    Neuroimage; 2011 Aug; 57(3):1059-67. PubMed ID: 21575728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Interaction Forces Via EMG Under Changing Motion Dynamics.
    Stanbury TK; Alfaro JGC; Chinchalkar S; Trejos AL
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.