These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31374785)

  • 1. Developing a Quasi-Static Controller for a Paralyzed Human Arm: A Simulation Study.
    Wolf DN; Schearer EM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1153-1158. PubMed ID: 31374785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.
    Wolf DN; Schearer EM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2044-2052. PubMed ID: 30130233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating an open-loop functional electrical stimulation controller for holding the shoulder and elbow configuration of a paralyzed arm.
    Wolf DN; Schearer EM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():789-794. PubMed ID: 28813916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study.
    Schearer EM; Wolf DN
    J Neural Eng; 2020 Feb; 17(1):016051. PubMed ID: 31910397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Dynamic Motion Planning for Practical FES-Controlled Reaching Motions in Spinal Cord Injury.
    Wolf DN; van den Bogert AJ; Schearer EM
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2246-2256. PubMed ID: 37141071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and evaluation of a proportional derivative controller for planar arm movement.
    Jagodnik KM; van den Bogert AJ
    J Biomech; 2010 Apr; 43(6):1086-91. PubMed ID: 20097345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles.
    Pohlmeyer EA; Oby ER; Perreault EJ; Solla SA; Kilgore KL; Kirsch RF; Miller LE
    PLoS One; 2009 Jun; 4(6):e5924. PubMed ID: 19526055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
    Sharif Razavian R; Ghannadi B; Mehrabi N; Charlet M; McPhee J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2033-2043. PubMed ID: 29994402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Learning Rate, Accuracy, and Workspace of Reinforcement Learning Controllers for a Musculoskeletal Model of the Human Arm.
    Crowder DC; Abreu J; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():30-39. PubMed ID: 34898436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a time-delayed 5 degrees of freedom arm model for use in upper extremity functional electrical stimulation.
    Cooman P; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():322-4. PubMed ID: 23365895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching stimulation patterns improves performance of paralyzed human quadriceps muscle.
    Scott WB; Lee SC; Johnston TE; Binder-Macleod SA
    Muscle Nerve; 2005 May; 31(5):581-8. PubMed ID: 15779000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury.
    Mulcahey MJ; Smith BT; Betz RR
    Spinal Cord; 1999 Aug; 37(8):585-91. PubMed ID: 10455536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
    Crowder DC; Abreu J; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1016-1025. PubMed ID: 33999822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J; Lee SC; Johnston TE; Wexler AS; Scott WB; Binder-Macleod SA
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Reinforcement Learning for Control of Time-Varying Musculoskeletal Systems With High Fatigability: A Feasibility Study.
    Abreu J; Crowder DC; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2613-2622. PubMed ID: 36063517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially distributed sequential stimulation reduces fatigue in paralyzed triceps surae muscles: a case study.
    Nguyen R; Masani K; Micera S; Morari M; Popovic MR
    Artif Organs; 2011 Dec; 35(12):1174-80. PubMed ID: 21501192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.