These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 31374804)
1. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results. Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804 [TBL] [Abstract][Full Text] [Related]
2. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Witteveen HJ; Rietman HS; Veltink PH Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348 [TBL] [Abstract][Full Text] [Related]
3. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625 [TBL] [Abstract][Full Text] [Related]
4. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161 [TBL] [Abstract][Full Text] [Related]
5. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929 [TBL] [Abstract][Full Text] [Related]
6. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
7. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses. Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the effect of non-invasive force feedback on prosthetic grasp force modulation in participants with and without limb loss. Barontini F; Van Straaten M; Catalano MG; Thoreson A; Lopez C; Lennon R; Bianchi M; Andrews K; Santello M; Bicchi A; Zhao K PLoS One; 2023; 18(5):e0285081. PubMed ID: 37141211 [TBL] [Abstract][Full Text] [Related]
9. Improving internal model strength and performance of prosthetic hands using augmented feedback. Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477 [TBL] [Abstract][Full Text] [Related]
10. Closed-Loop Force Control by Biorealistic Hand Prosthesis With Visual and Tactile Sensory Feedback. Zhang Z; Xie A; Chou CH; Liang W; Zhang J; Bi S; Lan N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2939-2949. PubMed ID: 39110556 [TBL] [Abstract][Full Text] [Related]
11. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Raveh E; Portnoy S; Friedman J Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091 [TBL] [Abstract][Full Text] [Related]
12. A synergy-driven approach to a myoelectric hand. Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196 [TBL] [Abstract][Full Text] [Related]
13. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. Markovic M; Dosen S; Cipriani C; Popovic D; Farina D J Neural Eng; 2014 Aug; 11(4):046001. PubMed ID: 24891493 [TBL] [Abstract][Full Text] [Related]
14. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179 [TBL] [Abstract][Full Text] [Related]
15. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Dosen S; Markovic M; Wille N; Henkel M; Koppe M; Ninu A; Frömmel C; Farina D Exp Brain Res; 2015 Jun; 233(6):1855-65. PubMed ID: 25804864 [TBL] [Abstract][Full Text] [Related]
16. Electrotactile EMG feedback improves the control of prosthesis grasping force. Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992 [TBL] [Abstract][Full Text] [Related]
17. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study. Gonzalez J; Soma H; Sekine M; Yu W J Neuroeng Rehabil; 2012 Jun; 9():33. PubMed ID: 22682425 [TBL] [Abstract][Full Text] [Related]
18. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand. Chai G; Wang H; Li G; Sheng X; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165 [TBL] [Abstract][Full Text] [Related]
19. The SmartHand transradial prosthesis. Cipriani C; Controzzi M; Carrozza MC J Neuroeng Rehabil; 2011 May; 8():29. PubMed ID: 21600048 [TBL] [Abstract][Full Text] [Related]
20. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis. Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]