BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31374862)

  • 1. A Data-Based Framework for Identifying a Source Location of a Contaminant Spill in a River System with Random Measurement Errors.
    Kim JH; Lee ML; Park C
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31374862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis.
    Kwon S; Noh H; Seo IW; Jung SH; Baek D
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33498931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal water quality monitoring network design for river systems.
    Telci IT; Nam K; Guan J; Aral MM
    J Environ Manage; 2009 Jul; 90(10):2987-98. PubMed ID: 19501953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework of characteristics identification and source apportionment of water pollution in a river: a case study in the Jinjiang River, China.
    Chen H; Teng Y; Wang J
    Water Sci Technol; 2012; 65(11):2071-8. PubMed ID: 22592480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha River.
    Kilic SG; Aral MM
    Sci Total Environ; 2009 Jun; 407(12):3855-66. PubMed ID: 19321188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory.
    Shi B; Jiang J; Sivakumar B; Zheng Y; Wang P
    Water Res; 2018 May; 134():140-152. PubMed ID: 29426031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning and Simulation-Optimization Coupling for Water Distribution Network Contamination Source Detection.
    Grbčić L; Kranjčević L; Družeta S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a dynamic 2-D mixing model to assess the impact of chemical spills on raw water quality.
    Farahbakhsh K; Putz G; Smith DW
    Environ Technol; 2002 Jul; 23(7):813-21. PubMed ID: 12164641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Machine Learning-based Algorithm for Water Network Contamination Source Localization.
    Grbčić L; Lučin I; Kranjčević L; Družeta S
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cost-effective and efficient framework to determine water quality monitoring network locations.
    Alilou H; Moghaddam Nia A; Keshtkar H; Han D; Bray M
    Sci Total Environ; 2018 May; 624():283-293. PubMed ID: 29253776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and identification of the Detroit River mystery oil spill (2002).
    Wang Z; Fingas M; Lambert P; Zeng G; Yang C; Hollebone B
    J Chromatogr A; 2004 Jun; 1038(1-2):201-14. PubMed ID: 15233535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for automated anomaly detection in high frequency water-quality data from in situ sensors.
    Leigh C; Alsibai O; Hyndman RJ; Kandanaarachchi S; King OC; McGree JM; Neelamraju C; Strauss J; Talagala PD; Turner RDR; Mengersen K; Peterson EE
    Sci Total Environ; 2019 May; 664():885-898. PubMed ID: 30769312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contaminant point source localization error estimates as functions of data quantity and model quality.
    Hansen SK; Vesselinov VV
    J Contam Hydrol; 2016 Oct; 193():74-85. PubMed ID: 27639975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping Oil Spills from Dual-Polarized SAR Images Using an Artificial Neural Network: Application to Oil Spill in the Kerch Strait in November 2007.
    Kim D; Jung HS
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29997367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inversion of multiple parameters for river pollution accidents using emergency monitoring data.
    Jing P; Yang Z; Zhou W; Huai W; Lu X
    Water Environ Res; 2019 Aug; 91(8):731-738. PubMed ID: 30849201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of (4-methylcyclohexyl)methanol isomers by heated purge-and-trap GC/MS in water samples from the 2014 Elk River, West Virginia, chemical spill.
    Foreman WT; Rose DL; Chambers DB; Crain AS; Murtagh LK; Thakellapalli H; Wang KK
    Chemosphere; 2015 Jul; 131():217-24. PubMed ID: 25542639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters near and distant to a major use source.
    Konwick BJ; Tomy GT; Ismail N; Peterson JT; Fauver RJ; Higginbotham D; Fisk AT
    Environ Toxicol Chem; 2008 Oct; 27(10):2011-8. PubMed ID: 18419175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.
    Deonarine A; Bartov G; Johnson TM; Ruhl L; Vengosh A; Hsu-Kim H
    Environ Sci Technol; 2013 Feb; 47(4):2100-8. PubMed ID: 23249246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of contaminant sources in enclosed spaces by a single sensor.
    Zhang T; Chen Q
    Indoor Air; 2007 Dec; 17(6):439-49. PubMed ID: 18045268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.
    Dridi L; Pollet I; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2009 Jun; 107(1-2):22-44. PubMed ID: 19395120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.