These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31374871)

  • 41. Induced pluripotent stem cells in cartilage tissue engineering: a literature review.
    Owaidah AY
    Biosci Rep; 2024 May; 44(5):. PubMed ID: 38563479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering.
    Zhang CY; Fu CP; Li XY; Lu XC; Hu LG; Kankala RK; Wang SB; Chen AZ
    Molecules; 2022 May; 27(11):. PubMed ID: 35684380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in bioprinting techniques: approaches, applications and future prospects.
    Li J; Chen M; Fan X; Zhou H
    J Transl Med; 2016 Sep; 14():271. PubMed ID: 27645770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy.
    Alonzo M; AnilKumar S; Roman B; Tasnim N; Joddar B
    Transl Res; 2019 Sep; 211():64-83. PubMed ID: 31078513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
    Ma X; Qu X; Zhu W; Li YS; Yuan S; Zhang H; Liu J; Wang P; Lai CS; Zanella F; Feng GS; Sheikh F; Chien S; Chen S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2206-11. PubMed ID: 26858399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration.
    Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies.
    Yazdanpanah Z; Johnston JD; Cooper DML; Chen X
    Front Bioeng Biotechnol; 2022; 10():824156. PubMed ID: 35480972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques.
    Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M
    Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in bioprinting using silk protein-based bioinks.
    Chakraborty J; Mu X; Pramanick A; Kaplan DL; Ghosh S
    Biomaterials; 2022 Aug; 287():121672. PubMed ID: 35835001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs.
    Susapto HH; Alhattab D; Abdelrahman S; Khan Z; Alshehri S; Kahin K; Ge R; Moretti M; Emwas AH; Hauser CAE
    Nano Lett; 2021 Apr; 21(7):2719-2729. PubMed ID: 33492960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review.
    Masri S; Zawani M; Zulkiflee I; Salleh A; Fadilah NIM; Maarof M; Wen APY; Duman F; Tabata Y; Aziz IA; Bt Hj Idrus R; Fauzi MB
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Review of Stem Cell Technology Targeting Hepatocyte Growth as an Alternative to Organ Transplantation.
    Goulart E
    Methods Mol Biol; 2023; 2575():181-193. PubMed ID: 36301476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Harnessing light in biofabrication.
    Levato R; Lim KS
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36723633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality.
    Hull SM; Brunel LG; Heilshorn SC
    Adv Mater; 2022 Jan; 34(2):e2103691. PubMed ID: 34672027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tissue and Organ 3D Bioprinting.
    Xia Z; Jin S; Ye K
    SLAS Technol; 2018 Aug; 23(4):301-314. PubMed ID: 29474789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An overview of nasal cartilage bioprinting: from bench to bedside.
    Rostamani H; Fakhraei O; Zamirinadaf N; Mahjour M
    J Biomater Sci Polym Ed; 2024 Jun; 35(8):1273-1320. PubMed ID: 38441976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.