These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31374915)

  • 1. Very Low Resource Digital Implementation of Bioimpedance Analysis.
    Soulier F; Lamlih A; Kerzérho V; Bernard S; Rouyer T
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31374915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-frequency simultaneous measurement of bioimpedance spectroscopy based on a low crest factor multisine excitation.
    Yang Y; Zhang F; Tao K; Wang L; Wen H; Teng Z
    Physiol Meas; 2015 Mar; 36(3):489-501. PubMed ID: 25679488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analog Integrated Current Drivers for Bioimpedance Applications: A Review.
    Neshatvar N; Langlois P; Bayford R; Demosthenous A
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Measurement Methods for Embedded Bioimpedance Spectroscopy Systems.
    Ben Atitallah B; Kallel AY; Bouchaala D; Derbel N; Kanoun O
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband discrete-level excitations for improved extraction of information in bioimpedance measurements.
    Min M; Paavle T
    Physiol Meas; 2014 Jun; 35(6):997-1010. PubMed ID: 24844381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy.
    Valente V; Demosthenous A
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27463721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stand-Alone Wearable System for Ubiquitous Real-Time Monitoring of Muscle Activation Potentials.
    Mazzetta I; Gentile P; Pessione M; Suppa A; Zampogna A; Bianchini E; Irrera F
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29844275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy.
    Yang Y; Wang J; Yu G; Niu F; He P
    Physiol Meas; 2006 Dec; 27(12):1293-310. PubMed ID: 17135701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications.
    Seoane F; Ferreira J; Sanchéz JJ; Bragós R
    Physiol Meas; 2008 Jun; 29(6):S267-78. PubMed ID: 18544823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Sensors for Frequency-Multiplexed EIT and Multilead ECG Data Acquisition.
    Rapin M; Braun F; Adler A; Wacker J; Frerichs I; Vogt B; Chetelat O
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):810-820. PubMed ID: 30028688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.
    Kaufmann S; Malhotra A; Ardelt G; Ryschka M
    Physiol Meas; 2014 Jun; 35(6):1163-80. PubMed ID: 24845882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.
    Kubendran R; Lee S; Mitra S; Yazicioglu RF
    IEEE Trans Biomed Circuits Syst; 2014 Apr; 8(2):196-205. PubMed ID: 24803412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized Bioimpedance Measurements with the MAX3000x Integrated Circuit: Characterization and Demonstration.
    Critcher S; Freeborn TJ
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.
    Ferreira J; Seoane F; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():559-62. PubMed ID: 24109748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse wave detection method based on the bio-impedance of the wrist.
    He J; Wang M; Li X; Li G; Lin L
    Rev Sci Instrum; 2016 May; 87(5):055001. PubMed ID: 27250460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS based whole cell impedance sensing: Challenges and future outlook.
    Hedayatipour A; Aslanzadeh S; McFarlane N
    Biosens Bioelectron; 2019 Oct; 143():111600. PubMed ID: 31479988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approach.
    Seoane F; Bragós R; Lindecrantz K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5121-5. PubMed ID: 17945876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-mode CMOS analog front-end (AFE) for electrical impedance spectroscopy (EIS) systems.
    Valente V; Dai Jiang ; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1914-1917. PubMed ID: 28268701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wideband impedance spectrum analyzer for process automation applications.
    Doerner S; Schneider T; Hauptmann PR
    Rev Sci Instrum; 2007 Oct; 78(10):105101. PubMed ID: 17979452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.