These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31375488)
1. An NADH-Dependent Reductase from Eubacterium ramulus Catalyzes the Stereospecific Heteroring Cleavage of Flavanones and Flavanonols. Braune A; Gütschow M; Blaut M Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375488 [TBL] [Abstract][Full Text] [Related]
2. Chalcone Isomerase from Eubacterium ramulus Catalyzes the Ring Contraction of Flavanonols. Braune A; Engst W; Elsinghorst PW; Furtmann N; Bajorath J; Gütschow M; Blaut M J Bacteriol; 2016 Nov; 198(21):2965-2974. PubMed ID: 27551015 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic conversion of flavonoids using bacterial chalcone isomerase and enoate reductase. Gall M; Thomsen M; Peters C; Pavlidis IV; Jonczyk P; Grünert PP; Beutel S; Scheper T; Gross E; Backes M; Geissler T; Ley JP; Hilmer JM; Krammer G; Palm GJ; Hinrichs W; Bornscheuer UT Angew Chem Int Ed Engl; 2014 Jan; 53(5):1439-42. PubMed ID: 24459060 [TBL] [Abstract][Full Text] [Related]
4. First bacterial chalcone isomerase isolated from Eubacterium ramulus. Herles C; Braune A; Blaut M Arch Microbiol; 2004 Jun; 181(6):428-34. PubMed ID: 15127184 [TBL] [Abstract][Full Text] [Related]
5. Transformation of flavonoids by intestinal microorganisms. Blaut M; Schoefer L; Braune A Int J Vitam Nutr Res; 2003 Mar; 73(2):79-87. PubMed ID: 12747214 [TBL] [Abstract][Full Text] [Related]
6. Reductive Metabolism of Xanthohumol and 8-Prenylnaringenin by the Intestinal Bacterium Eubacterium ramulus. Paraiso IL; Plagmann LS; Yang L; Zielke R; Gombart AF; Maier CS; Sikora AE; Blakemore PR; Stevens JF Mol Nutr Food Res; 2019 Jan; 63(2):e1800923. PubMed ID: 30471194 [TBL] [Abstract][Full Text] [Related]
7. Discovery of Novel Bacterial Chalcone Isomerases by a Sequence-Structure-Function-Evolution Strategy for Enzymatic Synthesis of (S)-Flavanones. Meinert H; Yi D; Zirpel B; Schuiten E; Geißler T; Gross E; Brückner SI; Hartmann B; Röttger C; Ley JP; Bornscheuer UT Angew Chem Int Ed Engl; 2021 Jul; 60(31):16874-16879. PubMed ID: 34129275 [TBL] [Abstract][Full Text] [Related]
8. Structural Basis for (2 Palm GJ; Thomsen M; Berndt L; Hinrichs W Molecules; 2022 Nov; 27(22):. PubMed ID: 36432010 [TBL] [Abstract][Full Text] [Related]
9. Flavonoid methylation: a novel 4'-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Schröder G; Wehinger E; Lukacin R; Wellmann F; Seefelder W; Schwab W; Schröder J Phytochemistry; 2004 Apr; 65(8):1085-94. PubMed ID: 15110688 [TBL] [Abstract][Full Text] [Related]
10. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Braune A; Blaut M Gut Microbes; 2016 May; 7(3):216-34. PubMed ID: 26963713 [TBL] [Abstract][Full Text] [Related]
11. Optimization of flavanonols heterologous biosynthesis in Magadán-Corpas P; Ye S; Braune A; Villar CJ; Lombó F Front Microbiol; 2024; 15():1378235. PubMed ID: 38605703 [TBL] [Abstract][Full Text] [Related]
12. Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone. Kostrzewa-Susłow E; Dymarska M; Guzik U; Wojcieszyńska D; Janeczko T Molecules; 2017 Oct; 22(11):. PubMed ID: 29077064 [TBL] [Abstract][Full Text] [Related]
13. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Thomsen M; Tuukkanen A; Dickerhoff J; Palm GJ; Kratzat H; Svergun DI; Weisz K; Bornscheuer UT; Hinrichs W Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):907-17. PubMed ID: 25849401 [TBL] [Abstract][Full Text] [Related]
14. First purified recombinant CYP75B including transmembrane helix with unexpected high substrate specificity to (2R)-naringenin. Hausjell J; Weissensteiner J; Molitor C; Schlangen K; Spadiut O; Halbwirth H Sci Rep; 2022 May; 12(1):8548. PubMed ID: 35595763 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the baiH gene encoding a bile acid-inducible NADH:flavin oxidoreductase from Eubacterium sp. strain VPI 12708. Franklund CV; Baron SF; Hylemon PB J Bacteriol; 1993 May; 175(10):3002-12. PubMed ID: 8491719 [TBL] [Abstract][Full Text] [Related]
16. Degradation of quercetin and luteolin by Eubacterium ramulus. Braune A; Gütschow M; Engst W; Blaut M Appl Environ Microbiol; 2001 Dec; 67(12):5558-67. PubMed ID: 11722907 [TBL] [Abstract][Full Text] [Related]
17. Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Alhapel A; Darley DJ; Wagener N; Eckel E; Elsner N; Pierik AJ Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12341-6. PubMed ID: 16894175 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic degradation of flavonoids by Eubacterium ramulus. Schneider H; Blaut M Arch Microbiol; 2000 Jan; 173(1):71-5. PubMed ID: 10648107 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of an NADH oxidase from Eubacterium ramulus. Herles C; Braune A; Blaut M Arch Microbiol; 2002 Jul; 178(1):71-4. PubMed ID: 12070772 [TBL] [Abstract][Full Text] [Related]
20. Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. Braune A; Engst W; Blaut M J Agric Food Chem; 2005 Mar; 53(5):1782-90. PubMed ID: 15740074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]