These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
3. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Banerjee M; Banerjee S Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074 [TBL] [Abstract][Full Text] [Related]
4. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. Baurmann M; Gross T; Feudel U J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal chaos stimulated by transverse Hopf instabilities in an optical bilayer system. Paulau PV; Babushkin IV; Loiko NA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046222. PubMed ID: 15600510 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Just W; Bose M; Bose S; Engel H; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689 [TBL] [Abstract][Full Text] [Related]
7. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation. Ipsen M; Sorensen PG Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892 [TBL] [Abstract][Full Text] [Related]
8. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations. Halloy J; Sonnino G; Coullet P Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014 [TBL] [Abstract][Full Text] [Related]
9. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Schüler D; Alonso S; Torcini A; Bär M Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062 [TBL] [Abstract][Full Text] [Related]
10. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection. Oprea I; Triandaf I; Dangelmayr G; Schwartz IB Chaos; 2007 Jun; 17(2):023101. PubMed ID: 17614655 [TBL] [Abstract][Full Text] [Related]
11. Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system. Ledesma-Durán A; Ortiz-Durán EA; Aragón JL; Santamaría-Holek I Phys Rev E; 2020 Sep; 102(3-1):032214. PubMed ID: 33076036 [TBL] [Abstract][Full Text] [Related]
12. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions. Alonso S; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167 [TBL] [Abstract][Full Text] [Related]
13. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion. Kumar P; Gangopadhyay G Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772 [TBL] [Abstract][Full Text] [Related]
14. Extended and localized Hopf-Turing mixed-mode in non-instantaneous Kerr cavities. Ouali M; Coulibaly S; Taki M; Tlidi M Opt Express; 2017 Mar; 25(5):4714-4719. PubMed ID: 28380742 [TBL] [Abstract][Full Text] [Related]
15. Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model. Liu B; Wu R; Chen L Chaos; 2018 Nov; 28(11):113118. PubMed ID: 30501205 [TBL] [Abstract][Full Text] [Related]
16. Noise-induced precursors of state transitions in the stochastic Wilson-cowan model. Negahbani E; Steyn-Ross DA; Steyn-Ross ML; Wilson MT; Sleigh JW J Math Neurosci; 2015; 5():9. PubMed ID: 25859420 [TBL] [Abstract][Full Text] [Related]