These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31375714)

  • 1. Spatio-temporal secondary instabilities near the Turing-Hopf bifurcation.
    Ledesma-Durán A; Aragón JL
    Sci Rep; 2019 Aug; 9(1):11287. PubMed ID: 31375714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
    Banerjee M; Banerjee S
    Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations.
    Baurmann M; Gross T; Feudel U
    J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal chaos stimulated by transverse Hopf instabilities in an optical bilayer system.
    Paulau PV; Babushkin IV; Loiko NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046222. PubMed ID: 15600510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation.
    Ipsen M; Sorensen PG
    Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.
    Schüler D; Alonso S; Torcini A; Bär M
    Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.
    Oprea I; Triandaf I; Dangelmayr G; Schwartz IB
    Chaos; 2007 Jun; 17(2):023101. PubMed ID: 17614655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system.
    Ledesma-Durán A; Ortiz-Durán EA; Aragón JL; Santamaría-Holek I
    Phys Rev E; 2020 Sep; 102(3-1):032214. PubMed ID: 33076036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion.
    Kumar P; Gangopadhyay G
    Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended and localized Hopf-Turing mixed-mode in non-instantaneous Kerr cavities.
    Ouali M; Coulibaly S; Taki M; Tlidi M
    Opt Express; 2017 Mar; 25(5):4714-4719. PubMed ID: 28380742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model.
    Liu B; Wu R; Chen L
    Chaos; 2018 Nov; 28(11):113118. PubMed ID: 30501205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-induced precursors of state transitions in the stochastic Wilson-cowan model.
    Negahbani E; Steyn-Ross DA; Steyn-Ross ML; Wilson MT; Sleigh JW
    J Math Neurosci; 2015; 5():9. PubMed ID: 25859420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability in reaction-superdiffusion systems.
    Torabi R; Rezaei Z
    Phys Rev E; 2016 Nov; 94(5-1):052202. PubMed ID: 27967163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium thermodynamics of glycolytic traveling wave: Benjamin-Feir instability.
    Kumar P; Gangopadhyay G
    Phys Rev E; 2021 Jul; 104(1-1):014221. PubMed ID: 34412344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced patterns near a Turing-Hopf bifurcation.
    Topaz CM; Catllá AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026213. PubMed ID: 20365644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.