BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31375751)

  • 1. An immortalized cell line derived from renal erythropoietin-producing (REP) cells demonstrates their potential to transform into myofibroblasts.
    Sato K; Hirano I; Sekine H; Miyauchi K; Nakai T; Kato K; Ito S; Yamamoto M; Suzuki N
    Sci Rep; 2019 Aug; 9(1):11254. PubMed ID: 31375751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype.
    Imeri F; Nolan KA; Bapst AM; Santambrogio S; Abreu-Rodríguez I; Spielmann P; Pfundstein S; Libertini S; Crowther L; Orlando IMC; Dahl SL; Keodara A; Kuo W; Kurtcuoglu V; Scholz CC; Qi W; Hummler E; Hoogewijs D; Wenger RH
    Kidney Int; 2019 Feb; 95(2):375-387. PubMed ID: 30502050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-β1 decreases erythropoietin production through repressing hypoxia-inducible factor 2α in erythropoietin-producing cells.
    Shih HM; Pan SY; Wu CJ; Chou YH; Chen CY; Chang FC; Chen YT; Chiang WC; Tsai HC; Chen YM; Lin SL
    J Biomed Sci; 2021 Nov; 28(1):73. PubMed ID: 34724959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis.
    Suzuki N; Yamamoto M
    Pflugers Arch; 2016 Jan; 468(1):3-12. PubMed ID: 26452589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response.
    Anusornvongchai T; Nangaku M; Jao TM; Wu CH; Ishimoto Y; Maekawa H; Tanaka T; Shimizu A; Yamamoto M; Suzuki N; Sassa R; Inagi R
    Kidney Int; 2018 Sep; 94(3):536-550. PubMed ID: 29887316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate-mapping of erythropoietin-producing cells in mouse models of hypoxaemia and renal tissue remodelling reveals repeated recruitment and persistent functionality.
    Dahl SL; Pfundstein S; Hunkeler R; Dong X; Knöpfel T; Spielmann P; Scholz CC; Nolan KA; Wenger RH
    Acta Physiol (Oxf); 2022 Mar; 234(3):e13768. PubMed ID: 34982511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal Anemia Model Mouse Established by Transgenic Rescue with an Erythropoietin Gene Lacking Kidney-Specific Regulatory Elements.
    Hirano I; Suzuki N; Yamazaki S; Sekine H; Minegishi N; Shimizu R; Yamamoto M
    Mol Cell Biol; 2017 Feb; 37(4):. PubMed ID: 27920250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease.
    Pedersen L; Wogensen L; Marcussen N; Cecchi CR; Dalsgaard T; Dagnæs-Hansen F
    PLoS One; 2015; 10(6):e0128367. PubMed ID: 26046536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source and microenvironmental regulation of erythropoietin in the kidney.
    Nolan KA; Wenger RH
    Curr Opin Nephrol Hypertens; 2018 Jul; 27(4):277-282. PubMed ID: 29746306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of the DNA Methylation Signature of Renal Erythropoietin-Producing Cells Governs the Sensitivity to Drugs Targeting the Hypoxia-Response Pathway in Kidney Disease Progression.
    Sato K; Kumagai N; Suzuki N
    Front Genet; 2019; 10():1134. PubMed ID: 31798631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling.
    Souma T; Nezu M; Nakano D; Yamazaki S; Hirano I; Sekine H; Dan T; Takeda K; Fong GH; Nishiyama A; Ito S; Miyata T; Yamamoto M; Suzuki N
    J Am Soc Nephrol; 2016 Feb; 27(2):428-38. PubMed ID: 26054543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of renal erythropoietin-producing cells governs fibrosis.
    Souma T; Yamazaki S; Moriguchi T; Suzuki N; Hirano I; Pan X; Minegishi N; Abe M; Kiyomoto H; Ito S; Yamamoto M
    J Am Soc Nephrol; 2013 Oct; 24(10):1599-616. PubMed ID: 23833259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of myofibroblasts and cellular events triggering fibrosis.
    Mack M; Yanagita M
    Kidney Int; 2015 Feb; 87(2):297-307. PubMed ID: 25162398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology and pathophysiology of renal erythropoietin-producing cells.
    Shih HM; Wu CJ; Lin SL
    J Formos Med Assoc; 2018 Nov; 117(11):955-963. PubMed ID: 29655605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors.
    Kaneko K; Sato Y; Uchino E; Toriu N; Shigeta M; Kiyonari H; Endo S; Fukuma S; Yanagita M
    Kidney Int; 2022 Aug; 102(2):280-292. PubMed ID: 35644281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys.
    Chang YT; Yang CC; Pan SY; Chou YH; Chang FC; Lai CF; Tsai MH; Hsu HL; Lin CH; Chiang WC; Wu MS; Chu TS; Chen YM; Lin SL
    J Clin Invest; 2016 Feb; 126(2):721-31. PubMed ID: 26731474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice.
    Asada N; Takase M; Nakamura J; Oguchi A; Asada M; Suzuki N; Yamamura K; Nagoshi N; Shibata S; Rao TN; Fehling HJ; Fukatsu A; Minegishi N; Kita T; Kimura T; Okano H; Yamamoto M; Yanagita M
    J Clin Invest; 2011 Oct; 121(10):3981-90. PubMed ID: 21911936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions.
    Miyauchi K; Nakai T; Saito S; Yamamoto T; Sato K; Kato K; Nezu M; Miyazaki M; Ito S; Yamamoto M; Suzuki N
    EBioMedicine; 2021 Feb; 64():103209. PubMed ID: 33508746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice.
    Pan X; Suzuki N; Hirano I; Yamazaki S; Minegishi N; Yamamoto M
    PLoS One; 2011; 6(10):e25839. PubMed ID: 22022454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fount, fate, features, and function of renal erythropoietin-producing cells.
    Dahl SL; Bapst AM; Khodo SN; Scholz CC; Wenger RH
    Pflugers Arch; 2022 Aug; 474(8):783-797. PubMed ID: 35750861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.