These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31376362)

  • 1. Insight into the antimicrobial mechanism of action of β
    Koivuniemi A; Fallarero A; Bunker A
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183028. PubMed ID: 31376362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes.
    Chen L; Li X; Gao L; Fang W
    J Phys Chem B; 2015 Jan; 119(3):850-60. PubMed ID: 25062757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics.
    Lohner K; Blondelle SE
    Comb Chem High Throughput Screen; 2005 May; 8(3):241-56. PubMed ID: 15892626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations.
    Kyriakou PK; Ekblad B; Kristiansen PE; Kaznessis YN
    Biochim Biophys Acta; 2016 Apr; 1858(4):824-35. PubMed ID: 26774214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and simulation studies reveal mechanism of action of human defensin derivatives.
    Rani L; Arora A; Majhi S; Mishra A; Mallajosyula SS
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183824. PubMed ID: 34838874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of antimicrobial peptides.
    Mátyus E; Kandt C; Tieleman DP
    Curr Med Chem; 2007; 14(26):2789-98. PubMed ID: 18045125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista.
    Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R
    Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants.
    Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK
    Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes.
    Koller D; Lohner K
    Biochim Biophys Acta; 2014 Sep; 1838(9):2250-9. PubMed ID: 24853655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.
    Wu X; Singh AK; Wu X; Lyu Y; Bhunia AK; Narsimhan G
    Colloids Surf B Biointerfaces; 2016 Jul; 143():194-205. PubMed ID: 27011349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic turn conformation of a short tryptophan-rich cationic antimicrobial peptide and its interaction with phospholipid membranes.
    Nichols M; Kuljanin M; Nategholeslam M; Hoang T; Vafaei S; Tomberli B; Gray CG; DeBruin L; Jelokhani-Niaraki M
    J Phys Chem B; 2013 Nov; 117(47):14697-708. PubMed ID: 24195729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydramacin-1 in action: scrutinizing the barnacle model.
    Michalek M; Vincent B; Podschun R; Grötzinger J; Bechinger B; Jung S
    Antimicrob Agents Chemother; 2013 Jul; 57(7):2955-66. PubMed ID: 23587944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action.
    Chen R; Mark AE
    Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.