These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31376476)

  • 1. The emerging role of the mitochondrial fatty-acid synthase (mtFASII) in the regulation of energy metabolism.
    Wehbe Z; Behringer S; Alatibi K; Watkins D; Rosenblatt D; Spiekerkoetter U; Tucci S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Nov; 1864(11):1629-1643. PubMed ID: 31376476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism.
    Tucci S; Alatibi KI; Wehbe Z
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33917608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling.
    Clay HB; Parl AK; Mitchell SL; Singh L; Bell LN; Murdock DG
    PLoS One; 2016; 11(3):e0151171. PubMed ID: 26963735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency.
    Bowman CE; Rodriguez S; Selen Alpergin ES; Acoba MG; Zhao L; Hartung T; Claypool SM; Watkins PA; Wolfgang MJ
    Cell Chem Biol; 2017 Jun; 24(6):673-684.e4. PubMed ID: 28479296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian ACSF3 protein is a malonyl-CoA synthetase that supplies the chain extender units for mitochondrial fatty acid synthesis.
    Witkowski A; Thweatt J; Smith S
    J Biol Chem; 2011 Sep; 286(39):33729-36. PubMed ID: 21846720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism.
    Bowman CE; Wolfgang MJ
    Adv Biol Regul; 2019 Jan; 71():34-40. PubMed ID: 30201289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain metabolism and neurological symptoms in combined malonic and methylmalonic aciduria.
    Tucci S
    Orphanet J Rare Dis; 2020 Jan; 15(1):27. PubMed ID: 31969167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria.
    Sloan JL; Johnston JJ; Manoli I; Chandler RJ; Krause C; Carrillo-Carrasco N; Chandrasekaran SD; Sysol JR; O'Brien K; Hauser NS; Sapp JC; Dorward HM; Huizing M; ; Barshop BA; Berry SA; James PM; Champaigne NL; de Lonlay P; Valayannopoulos V; Geschwind MD; Gavrilov DK; Nyhan WL; Biesecker LG; Venditti CP
    Nat Genet; 2011 Aug; 43(9):883-6. PubMed ID: 21841779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype.
    Alfares A; Nunez LD; Al-Thihli K; Mitchell J; Melançon S; Anastasio N; Ha KC; Majewski J; Rosenblatt DS; Braverman N
    J Med Genet; 2011 Sep; 48(9):602-5. PubMed ID: 21785126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACSF3 and Mal(onate)-Adapted Mitochondria.
    Lombard DB; Zhao Y
    Cell Chem Biol; 2017 Jun; 24(6):649-650. PubMed ID: 28644952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3.
    Monteuuis G; Suomi F; Kerätär JM; Masud AJ; Kastaniotis AJ
    Biochem J; 2017 Nov; 474(22):3783-3797. PubMed ID: 28986507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice.
    Goldenberg JR; Wang X; Lewandowski ED
    J Mol Cell Cardiol; 2016 May; 94():1-9. PubMed ID: 26995156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle.
    Teodoro BG; Sampaio IH; Bomfim LH; Queiroz AL; Silveira LR; Souza AO; Fernandes AM; Eberlin MN; Huang TY; Zheng D; Neufer PD; Cortright RN; Alberici LC
    J Physiol; 2017 Feb; 595(3):677-693. PubMed ID: 27647415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poldip2 is an oxygen-sensitive protein that controls PDH and αKGDH lipoylation and activation to support metabolic adaptation in hypoxia and cancer.
    Paredes F; Sheldon K; Lassègue B; Williams HC; Faidley EA; Benavides GA; Torres G; Sanhueza-Olivares F; Yeligar SM; Griendling KK; Darley-Usmar V; San Martin A
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1789-1794. PubMed ID: 29434038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined malonic and methylmalonic aciduria due to ACSF3 mutations: Benign clinical course in an unselected cohort.
    Levtova A; Waters PJ; Buhas D; Lévesque S; Auray-Blais C; Clarke JTR; Laframboise R; Maranda B; Mitchell GA; Brunel-Guitton C; Braverman NE
    J Inherit Metab Dis; 2019 Jan; 42(1):107-116. PubMed ID: 30740739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid import into mitochondria.
    Kerner J; Hoppel C
    Biochim Biophys Acta; 2000 Jun; 1486(1):1-17. PubMed ID: 10856709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compromised mitochondrial fatty acid synthesis in transgenic mice results in defective protein lipoylation and energy disequilibrium.
    Smith S; Witkowski A; Moghul A; Yoshinaga Y; Nefedov M; de Jong P; Feng D; Fong L; Tu Y; Hu Y; Young SG; Pham T; Cheung C; Katzman SM; Brand MD; Quinlan CL; Fens M; Kuypers F; Misquitta S; Griffey SM; Tran S; Gharib A; Knudsen J; Hannibal-Bach HK; Wang G; Larkin S; Thweatt J; Pasta S
    PLoS One; 2012; 7(10):e47196. PubMed ID: 23077570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acsbg1-dependent mitochondrial fitness is a metabolic checkpoint for tissue T
    Kanno T; Nakajima T; Kawashima Y; Yokoyama S; Asou HK; Sasamoto S; Hayashizaki K; Kinjo Y; Ohara O; Nakayama T; Endo Y
    Cell Rep; 2021 Nov; 37(6):109921. PubMed ID: 34758300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency.
    Rocha H; Ferreira R; Carvalho J; Vitorino R; Santa C; Lopes L; Gregersen N; Vilarinho L; Amado F
    J Proteomics; 2011 Dec; 75(1):221-8. PubMed ID: 21596162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired mitochondrial fatty acid oxidative flux in fibroblasts from a patient with malonyl-CoA decarboxylase deficiency.
    Bennett MJ; Harthcock PA; Boriack RL; Cohen JC
    Mol Genet Metab; 2001 Jul; 73(3):276-9. PubMed ID: 11461195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.