These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 31376632)
1. Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events. Rendina F; Bouchet PJ; Appolloni L; Russo GF; Sandulli R; Kolzenburg R; Putra A; Ragazzola F Mar Environ Res; 2019 Sep; 150():104764. PubMed ID: 31376632 [TBL] [Abstract][Full Text] [Related]
2. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
3. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Martin S; Cohu S; Vignot C; Zimmerman G; Gattuso JP Ecol Evol; 2013 Mar; 3(3):676-93. PubMed ID: 23533024 [TBL] [Abstract][Full Text] [Related]
5. Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). Zou D; Gao K J Phycol; 2013 Feb; 49(1):61-8. PubMed ID: 27008389 [TBL] [Abstract][Full Text] [Related]
6. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
7. An intertidal life: Combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community. Ragazzola F; Marchini A; Adani M; Bordone A; Castelli A; Cerrati G; Kolzenburg R; Langeneck J; di Marzo C; Nannini M; Raiteri G; Romanelli E; Santos M; Vasapollo C; Pipitone C; Lombardi C Mar Environ Res; 2021 Jul; 169():105342. PubMed ID: 33933902 [TBL] [Abstract][Full Text] [Related]
8. Effects of climate change factors on marine macroalgae: A review. Ji Y; Gao K Adv Mar Biol; 2021; 88():91-136. PubMed ID: 34119047 [TBL] [Abstract][Full Text] [Related]
9. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106 [TBL] [Abstract][Full Text] [Related]
10. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Aspinwall MJ; Pfautsch S; Tjoelker MG; Vårhammar A; Possell M; Drake JE; Reich PB; Tissue DT; Atkin OK; Rymer PD; Dennison S; Van Sluyter SC Glob Chang Biol; 2019 May; 25(5):1665-1684. PubMed ID: 30746837 [TBL] [Abstract][Full Text] [Related]
11. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Vásquez-Elizondo RM; Enríquez S Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396 [TBL] [Abstract][Full Text] [Related]
12. Near-future extreme temperatures affect physiology, morphology and recruitment of the temperate sponge Crella incrustans. Strano F; Micaroni V; Davy SK; Woods L; Bell JJ Sci Total Environ; 2022 Jun; 823():153466. PubMed ID: 35124025 [TBL] [Abstract][Full Text] [Related]
13. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Qui-Minet ZN; Coudret J; Davoult D; Grall J; Mendez-Sandin M; Cariou T; Martin S Ecol Evol; 2019 Dec; 9(24):13787-13807. PubMed ID: 31938482 [TBL] [Abstract][Full Text] [Related]
14. Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures. Kunze C; Luijckx P; Jackson AL; Donohue I Elife; 2022 Feb; 11():. PubMed ID: 35164901 [TBL] [Abstract][Full Text] [Related]
15. Effects of extreme temperatures and recovery potential of Gongolaria barbata from a coastal lagoon in the northern Adriatic Sea: an ex situ approach. Bilajac A; Gljušćić E; Smith S; Najdek M; Iveša L Ann Bot; 2024 Aug; 134(3):415-426. PubMed ID: 38484147 [TBL] [Abstract][Full Text] [Related]
16. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C.Agardh. Britton D; Schmid M; Noisette F; Havenhand JN; Paine ER; McGraw CM; Revill AT; Virtue P; Nichols PD; Mundy CN; Hurd CL Glob Chang Biol; 2020 Jun; 26(6):3512-3524. PubMed ID: 32105368 [TBL] [Abstract][Full Text] [Related]
17. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. Hofmann LC; Straub S; Bischof K J Exp Bot; 2013 Feb; 64(4):899-908. PubMed ID: 23314813 [TBL] [Abstract][Full Text] [Related]
18. The Field Metabolic Rate, Water Turnover, and Feeding and Drinking Behavior of a Small Avian Desert Granivore During a Summer Heatwave. Cooper CE; Withers PC; Hurley LL; Griffith SC Front Physiol; 2019; 10():1405. PubMed ID: 31824330 [TBL] [Abstract][Full Text] [Related]
19. Rhodolith primary and carbonate production in a changing ocean: The interplay of warming and nutrients. Schubert N; Salazar VW; Rich WA; Vivanco Bercovich M; Almeida Saá AC; Fadigas SD; Silva J; Horta PA Sci Total Environ; 2019 Aug; 676():455-468. PubMed ID: 31048175 [TBL] [Abstract][Full Text] [Related]
20. Comparative physiological behaviors of Ulva lactuca and Gracilariopsis lemaneiformis in responses to elevated atmospheric CO Liu C; Zou D; Yang Y Environ Sci Pollut Res Int; 2018 Sep; 25(27):27493-27502. PubMed ID: 30047019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]