These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 31376668)
1. Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Yoo HW; Kim J; Patil MD; Park BG; Joo SY; Yun H; Kim BG Bioresour Technol; 2019 Nov; 291():121812. PubMed ID: 31376668 [TBL] [Abstract][Full Text] [Related]
2. Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Julsing MK; Schrewe M; Cornelissen S; Hermann I; Schmid A; Bühler B Appl Environ Microbiol; 2012 Aug; 78(16):5724-33. PubMed ID: 22685130 [TBL] [Abstract][Full Text] [Related]
3. Maximization of cell viability rather than biocatalyst activity improves whole-cell ω-oxyfunctionalization performance. Kadisch M; Julsing MK; Schrewe M; Jehmlich N; Scheer B; von Bergen M; Schmid A; Bühler B Biotechnol Bioeng; 2017 Apr; 114(4):874-884. PubMed ID: 27883174 [TBL] [Abstract][Full Text] [Related]
4. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli. Ladkau N; Assmann M; Schrewe M; Julsing MK; Schmid A; Bühler B Metab Eng; 2016 Jul; 36():1-9. PubMed ID: 26969251 [TBL] [Abstract][Full Text] [Related]
5. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Schrewe M; Julsing MK; Lange K; Czarnotta E; Schmid A; Bühler B Biotechnol Bioeng; 2014 Sep; 111(9):1820-30. PubMed ID: 24852702 [TBL] [Abstract][Full Text] [Related]
6. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli. van Nuland YM; Eggink G; Weusthuis RA Appl Environ Microbiol; 2016 Jul; 82(13):3801-3807. PubMed ID: 27084021 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Scheps D; Honda Malca S; Richter SM; Marisch K; Nestl BM; Hauer B Microb Biotechnol; 2013 Nov; 6(6):694-707. PubMed ID: 23941649 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of He Q; Bennett GN; San KY; Wu H Front Bioeng Biotechnol; 2019; 7():273. PubMed ID: 31681749 [TBL] [Abstract][Full Text] [Related]
9. Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. Call TP; Akhtar MK; Baganz F; Grant C J Biol Eng; 2016; 10():5. PubMed ID: 27053948 [TBL] [Abstract][Full Text] [Related]
10. Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through Whole-Cell Biotransformation in Escherichia coli. Hsieh SC; Wang JH; Lai YC; Su CY; Lee KT Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180361 [TBL] [Abstract][Full Text] [Related]
11. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. Jeon EY; Song JW; Cha HJ; Lee SM; Lee J; Park JB J Biotechnol; 2018 Sep; 281():161-167. PubMed ID: 30016739 [TBL] [Abstract][Full Text] [Related]
12. fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Bae JH; Park BG; Jung E; Lee PG; Kim BG Appl Microbiol Biotechnol; 2014 Nov; 98(21):8917-25. PubMed ID: 25117545 [TBL] [Abstract][Full Text] [Related]
13. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli. Cho YH; Kim SJ; Kim JY; Lee DH; Park K; Park YC Appl Microbiol Biotechnol; 2018 Sep; 102(17):7407-7416. PubMed ID: 29936545 [TBL] [Abstract][Full Text] [Related]
14. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Cornelissen S; Julsing MK; Volmer J; Riechert O; Schmid A; Bühler B Biotechnol Bioeng; 2013 May; 110(5):1282-92. PubMed ID: 23239244 [TBL] [Abstract][Full Text] [Related]
15. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis. Bravo AL; Sigala JC; Le Borgne S; Morales M Biotechnol Lett; 2015 Apr; 37(4):807-14. PubMed ID: 25432418 [TBL] [Abstract][Full Text] [Related]
16. Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110[pGEc47]. Peters J; Witholt B Biochim Biophys Acta; 1994 Dec; 1196(2):145-53. PubMed ID: 7841178 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Li Z; Xu J; Jiang T; Ge Y; Liu P; Zhang M; Su Z; Gao C; Ma C; Xu P Sci Rep; 2016 Aug; 6():30884. PubMed ID: 27510748 [TBL] [Abstract][Full Text] [Related]
19. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Nieboer M; Kingma J; Witholt B Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351 [TBL] [Abstract][Full Text] [Related]
20. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Grant C; Woodley JM; Baganz F Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]