These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31376683)

  • 1. Catalytic recycling of NAD(P)H.
    Fukuzumi S; Lee YM; Nam W
    J Inorg Biochem; 2019 Oct; 199():110777. PubMed ID: 31376683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor.
    Betanzos-Lara S; Liu Z; Habtemariam A; Pizarro AM; Qamar B; Sadler PJ
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3897-900. PubMed ID: 22415924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium-coordinated poly(arylene-ethynylene)-alt-poly(arylene-vinylene) copolymer acting as photocatalyst for visible-light-powered NAD⁺/NADH reduction.
    Oppelt KT; Gasiorowski J; Egbe DA; Kollender JP; Himmelsbach M; Hassel AW; Sariciftci NS; Knör G
    J Am Chem Soc; 2014 Sep; 136(36):12721-9. PubMed ID: 25130570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Selectivity Cofactor NADH Regeneration Organic Iridium Complexes Used for High-Efficiency Chem-Enzyme Cascade Catalytic Hydrogen Transfer.
    Zhao LJ; Zhang C; Zhang S; Lv X; Chen J; Sun X; Su H; Murayama T; Qi C
    Inorg Chem; 2023 Oct; 62(43):17577-17582. PubMed ID: 37843583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor recycling mechanism in asymmetric biocatalytic reduction of carbonyl compounds mediated by yeast: which is the efficient electron donor?
    Zhang BL; Pionnier S
    Chemistry; 2003 Aug; 9(15):3604-10. PubMed ID: 12898687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Formation of Hydrogen Peroxide from Coenzyme NADH and Dioxygen with a Water-Soluble Iridium Complex and a Ubiquinone Coenzyme Analogue.
    Suenobu T; Shibata S; Fukuzumi S
    Inorg Chem; 2016 Aug; 55(15):7747-54. PubMed ID: 27403568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innocent But Deadly: Nontoxic Organoiridium Catalysts Promote Selective Cancer Cell Death.
    Yang L; Bose S; Ngo AH; Do LH
    ChemMedChem; 2017 Feb; 12(4):292-299. PubMed ID: 28052592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jun; 134(22):9417-27. PubMed ID: 22577897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic production of hydrogen by disproportionation of one-electron-reduced rhodium and iridium-ruthenium complexes in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    Angew Chem Int Ed Engl; 2011 Jan; 50(3):728-31. PubMed ID: 21226164
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.