BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31376805)

  • 1. Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method.
    Sorgog K; Kamo M
    Ecotoxicol Environ Saf; 2019 Nov; 183():109494. PubMed ID: 31376805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deriving the aquatic predicted no-effect concentrations (PNECs) of three chlorophenols for the Taihu Lake, China.
    Lei BL; Huang SB; Jin XW; Wang Z
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1823-31. PubMed ID: 20936560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting assessment factors for species sensitivity distributions as a function of sample size and variation in species sensitivity.
    Kamo M; Hayashi TI; Iwasaki Y
    Ecotoxicol Environ Saf; 2022 Nov; 246():114170. PubMed ID: 36242822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3.
    Jung JW; Kang JS; Choi J; Park JW
    Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33807469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms.
    DeForest DK; Schlekat CE
    Integr Environ Assess Manag; 2013 Oct; 9(4):580-9. PubMed ID: 23553986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions.
    Wigger H; Kawecki D; Nowack B; Adam V
    Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of data manipulation and statistical methods on species sensitivity distributions.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Feb; 23(2):489-99. PubMed ID: 14982398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling.
    Gredelj A; Barausse A; Grechi L; Palmeri L
    Environ Int; 2018 Oct; 119():66-78. PubMed ID: 29935425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of predicted no effect concentration (PNEC) for TCS to terrestrial species.
    Wang X; Zhang C; Liu Z; Wang W; Chen L
    Chemosphere; 2015 Nov; 139():428-33. PubMed ID: 26233766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consideration of exposure and species sensitivity of triclosan in the freshwater environment.
    Capdevielle M; Van Egmond R; Whelan M; Versteeg D; Hofmann-Kamensky M; Inauen J; Cunningham V; Woltering D
    Integr Environ Assess Manag; 2008 Jan; 4(1):15-23. PubMed ID: 18260205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the application of loss functions in determining assessment factors for ecological risk.
    Hickey GL; Craig PS; Hart A
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):293-300. PubMed ID: 18691758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derivation of predicted no effect concentrations (PNEC) for 2,4,6-trichlorophenol based on Chinese resident species.
    Jin X; Zha J; Xu Y; Giesy JP; Richardson KL; Wang Z
    Chemosphere; 2012 Jan; 86(1):17-23. PubMed ID: 21955353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving the predicted no effect concentrations of 35 pesticides by the QSAR-SSD method.
    Huang P; Liu SS; Wang ZJ; Ding TT; Xu YQ
    Chemosphere; 2022 Jul; 298():134303. PubMed ID: 35288184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials.
    Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A
    Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of the SSD approach in scientific case studies for ecological risk assessment.
    Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM
    Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOSAIC_SSD: a new web tool for species sensitivity distribution to include censored data by maximum likelihood.
    Kon Kam King G; Veber P; Charles S; Delignette-Muller ML
    Environ Toxicol Chem; 2014 Sep; 33(9):2133-9. PubMed ID: 24863265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative robustness of NOEC and ECx against large uncertainties in data.
    Tanaka Y; Nakamura K; Yokomizo H
    PLoS One; 2018; 13(11):e0206901. PubMed ID: 30485303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems.
    Maltby L; Blake N; Brock TC; van den Brink PJ
    Environ Toxicol Chem; 2005 Feb; 24(2):379-88. PubMed ID: 15719998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods.
    Zhang L; Shen L; Qin S; Cui J; Liu Y
    Environ Pollut; 2020 Jan; 256():113458. PubMed ID: 31706758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do we have to incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination of a theoretical assumption underlying species sensitivity distribution models.
    De Laender F; De Schamphelaere KA; Vanrolleghem PA; Janssen CR
    Environ Int; 2008 Apr; 34(3):390-6. PubMed ID: 17977598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.