BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31376805)

  • 21. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology.
    Fox DR
    Ecotoxicol Environ Saf; 2010 Feb; 73(2):123-31. PubMed ID: 19836077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecological criteria for zinc in Chinese soil as affected by soil properties.
    Wan Y; Jiang B; Wei D; Ma Y
    Ecotoxicol Environ Saf; 2020 May; 194():110418. PubMed ID: 32151872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological screening indicators of stress and risk for the Llobregat river water.
    López-Roldán R; Jubany I; Martí V; González S; Cortina JL
    J Hazard Mater; 2013 Dec; 263 Pt 1():239-47. PubMed ID: 23911059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model.
    Gao P; Li Z; Gibson M; Gao H
    Chemosphere; 2014 Jun; 104():113-9. PubMed ID: 24268347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response to: Quantifying the precision of ecological risk: Misunderstandings and errors in the methods for assessment factors versus species sensitivity distributions by Drs. Scott E. Belanger and Gregory J. Carr.
    Kamo M; Sorgog K
    Ecotoxicol Environ Saf; 2021 Jan; 207():111542. PubMed ID: 33254402
    [No Abstract]   [Full Text] [Related]  

  • 26. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers.
    Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD
    Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments.
    Obiakor MO; Tighe M; Wang Z; Ezeonyejiaku CD; Pereg L; Wilson SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25276-25290. PubMed ID: 28929352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems.
    Nam SH; Lee WM; Shin YJ; Yoon SJ; Kim SW; Kwak JI; An YJ
    Water Res; 2014 Jan; 48():126-36. PubMed ID: 24094731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mean Species Abundance as a Measure of Ecotoxicological Risk.
    Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R
    Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic effects of bisphenol S and bisphenol SIP on freshwater waterflea and ecological risk assessment.
    Park S; Hong Y; Lee J; Kho Y; Ji K
    Ecotoxicol Environ Saf; 2019 Dec; 185():109694. PubMed ID: 31562998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species sensitivity distribution for pentachlorophenol to aquatic organisms based on interval ecotoxicological data.
    Zhao J; Zhang R
    Ecotoxicol Environ Saf; 2017 Nov; 145():193-199. PubMed ID: 28734222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparison of aquatic predicted no-effect concentrations (PNECs) pentachlorophenol derived from different assessment approaches].
    Lei BL; Wen Y; Wang YP; Kang J; Liu Q
    Huan Jing Ke Xue; 2013 Jun; 34(6):2335-43. PubMed ID: 23947053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute-to-chronic species sensitivity distribution extrapolation.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Jul; 23(7):1774-85. PubMed ID: 15230330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental risk assessment of zinc in European freshwaters: a critical appraisal.
    Van Sprang PA; Verdonck FA; Van Assche F; Regoli L; De Schamphelaere KA
    Sci Total Environ; 2009 Oct; 407(20):5373-91. PubMed ID: 19631966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil ecological criteria for nickel as a function of soil properties.
    Wang X; Wei D; Ma Y; McLaughlin MJ
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2137-2146. PubMed ID: 29110234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating population-level HC5 for copper using a species sensitivity distribution approach.
    Iwasaki Y; Hayashi TI; Kamo M
    Environ Toxicol Chem; 2013 Jun; 32(6):1396-402. PubMed ID: 23417717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can We Reasonably Predict Chronic Species Sensitivity Distributions from Acute Species Sensitivity Distributions?
    Hiki K; Iwasaki Y
    Environ Sci Technol; 2020 Oct; 54(20):13131-13136. PubMed ID: 32924457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment.
    Guo Q; Wei D; Zhao H; Du Y
    Environ Pollut; 2020 Jan; 256():113460. PubMed ID: 31685328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures.
    Belanger S; Barron M; Craig P; Dyer S; Galay-Burgos M; Hamer M; Marshall S; Posthuma L; Raimondo S; Whitehouse P
    Integr Environ Assess Manag; 2017 Jul; 13(4):664-674. PubMed ID: 27531323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecological models in ecotoxicology and ecological risk assessment: an introduction to the special section.
    Galic N; Forbes V
    Environ Toxicol Chem; 2014 Jul; 33(7):1446-8. PubMed ID: 24939604
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.